-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathserver.py
144 lines (111 loc) · 3.81 KB
/
server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
"""
IDE: PyCharm
Project: ocr-api
Author: Robin
Filename: server.py
Date: 15.01.2020
"""
import os
from typing import List
import pytesseract
import uvicorn
import xmltodict
from fastapi import FastAPI, File, UploadFile
from pydantic import BaseModel
from starlette.responses import PlainTextResponse
app = FastAPI()
class ExtractedWord(BaseModel):
text: str = ""
x1: int = 0
y1: int = 0
x2: int = 0
y2: int = 0
confidence: float = 0.0
def set_values(self, text, x1, y1, x2, y2, confidence):
self.text = text
self.x1 = x1
self.y1 = y1
self.x2 = x2
self.y2 = y2
self.confidence = confidence
class ExtractedSpan(BaseModel):
text: str = ""
x1: int = 0
y1: int = 0
x2: int = 0
y2: int = 0
words: List[ExtractedWord] = []
def set_values(self, x1, y1, x2, y2):
self.x1 = x1
self.y1 = y1
self.x2 = x2
self.y2 = y2
def add_word(self, word):
self.words.append(word)
class ExtractedPage(BaseModel):
lang: str = "eng"
spans: List[ExtractedSpan] = []
def add_span(self, span):
self.spans.append(span)
@app.get("/ocr-version")
def read_root():
return pytesseract.get_tesseract_version()
def parse_bbox_args(args: str):
args = args.split()
if len(args) > 5:
# x, y, x2, y2, conf
return int(args[1]), int(args[2]), int(args[3]), int(args[4][:-1]), float(args[6]) / 100.0
else:
return int(args[1]), int(args[2]), int(args[3]), int(args[4])
def hocr_to_simple_json(hocr_dict: dict, lang: str):
response = ExtractedPage()
response.lang = lang
page = hocr_dict['html']['body']['div']['div']
if type(page) is not list:
page = [page]
for span in page:
if type(span['p']) is not list:
span['p'] = [span['p']]
for span_area in span['p']:
info = parse_bbox_args(span_area['@title'])
span_area_item = ExtractedSpan()
span_area_item.set_values(info[0], info[1], info[2], info[3])
if type(span_area['span']) is not list:
span_area['span'] = [span_area['span']]
for span_word in span_area['span']:
if '#text' in span_word['span']:
text = span_word['span']['#text']
info = parse_bbox_args(span_word['span']['@title'])
word = ExtractedWord()
word.set_values(text, info[0], info[1], info[2], info[3], info[4])
span_area_item.text += word.text + ' '
span_area_item.add_word(word)
if len(span_area_item.words) > 0:
span_area_item.text.strip()
response.add_span(span_area_item)
return response
@app.post("/api/extract", response_model=ExtractedPage, description="Extract text with positions from image")
def extract_text(file: UploadFile = File(...), lang: str = "eng", text_only: bool = False, custom_config: str = None):
"""
:param file:
:param lang: available: deu, eng
:return:
"""
filepath = "temp/" + file.filename
with file.file:
with open(filepath, "wb") as temp_file:
temp_file.write(file.file.read())
# preprocess_image(filepath)
if custom_config is None:
custom_config = '--oem 3'
if text_only:
output = bytes(pytesseract.image_to_string(filepath, lang=lang, config=custom_config), encoding="utf-8")
response = PlainTextResponse(content=output)
else:
output = pytesseract.image_to_pdf_or_hocr(filepath, lang=lang, extension='hocr', config=custom_config)
extracted = xmltodict.parse(output)
response = hocr_to_simple_json(extracted, lang)
os.remove(filepath)
return response
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=8000)