forked from zbxytx/Multi_feature_MER
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEulerian_video_magnification.py
133 lines (113 loc) · 4.68 KB
/
Eulerian_video_magnification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
#!/usr/bin/env python
# coding: utf-8
import numpy as np
import pandas as pd
import math
import cv2
import scipy.signal as signal
import scipy.fftpack as fftpack
import tensorflow as tf
import os
os.environ["CUDA_VISIBLE_DEVICES"]="-1"
class EVM:
def __init__(self, fps=200, low=0.2, high=2.4, level=6, alpha=8, lam_c=16, iq_reduce=0.1):
self.fps = fps
self.low = low
self.high = high
self.level = level
self.alpha = alpha
self.lam_c = lam_c
self.iq_reduce = iq_reduce
#Build Gaussian Pyramid
def build_gaussian_pyramid(self, src,level=3):
s=src.copy()
pyramid=[s]
for i in range(level):
s=cv2.pyrDown(s)
pyramid.append(s)
return pyramid
#Build Laplacian Pyramid
def build_laplacian_pyramid(self, src,level=3):
gaussianPyramid = self.build_gaussian_pyramid(src, level)
pyramid=[]
for i in range(level,0,-1):
GE=cv2.pyrUp(gaussianPyramid[i])
L=cv2.subtract(gaussianPyramid[i-1],GE)
pyramid.append(L)
return pyramid
#build laplacian pyramid for video
def laplacian_video(self, video_tensor,level=3):
tensor_list=[]
for i in range(0,video_tensor.shape[0]):
frame=video_tensor[i]
pyr=self.build_laplacian_pyramid(frame,level=level)
if i==0:
for k in range(level):
tensor_list.append(np.zeros((video_tensor.shape[0],pyr[k].shape[0],pyr[k].shape[1],3)))
for n in range(level):
tensor_list[n][i] = pyr[n]
return tensor_list
#butterworth bandpass filter
def butter_bandpass_filter(self, data, lowcut, highcut, fs, order=5):
omega = 0.5 * fs
low = lowcut / omega
high = highcut / omega
b, a = signal.butter(order, [low, high], btype='band')
y = signal.lfilter(b, a, data, axis=0)
return y
#reconstract video from laplacian pyramid
def reconstract_from_tensorlist(self, filter_tensor_list,level=3):
final=np.zeros(filter_tensor_list[-1].shape)
for i in range(filter_tensor_list[0].shape[0]):
up = filter_tensor_list[0][i]
for n in range(level-1):
up=cv2.pyrUp(up)+filter_tensor_list[n + 1][i]#可以改为up=cv2.pyrUp(up)
final[i]=up
return final
#change color space
def rgb2yiq(self, image):
return np.array(tf.image.rgb_to_yiq(image.astype('float32')))
def yiq2rgb(self, image):
return np.array(tf.image.yiq_to_rgb(image.astype('float32')))
#manify motion
def magnify_motion(self, img_seq, fps, low, high, level=6, alpha=8, lam_c=16, iq_reduce = 0.1):
#将图像序列转为yiq空间
t = []
height = img_seq[0].shape[0]
width = img_seq[0].shape[1]
temp = 2**level
for i in range(len(img_seq)):
#防止width与height不能整除temp,先resize
t.append(self.rgb2yiq(cv2.resize(img_seq[i],((width//temp)*temp, (height//temp)*temp),interpolation=cv2.INTER_CUBIC)))
#t.append(self.rgb2yiq(img_seq[i]).astype('float32'))
t = np.array(t)
f = fps
#注:此处使用seq与seq[0]的差值进行滤波
lap_video_list=self.laplacian_video(t-t[0],level=level)
filter_tensor_list=[]
for i in range(level):
filter_tensor=self.butter_bandpass_filter(lap_video_list[i],low,high,f)
height = filter_tensor.shape[1]
width = filter_tensor.shape[2]
delta = lam_c / 8.0 / (1.0 + alpha)
lam = math.sqrt(width * width + height * height) / 3
cur_alpha = lam / delta / 8 - 1
if i ==0 or i == level-1:
filter_tensor *= 0
else:
filter_tensor *= min(alpha, cur_alpha)
filter_tensor_list.append(filter_tensor)
recon=self.reconstract_from_tensorlist(filter_tensor_list, level=level)
recon[..., 1] *= iq_reduce
recon[..., 2] *= iq_reduce
final=t+recon
final = np.array(final)
for i in range(len(final)):
#final[i] = yiq2rgb(final[i])
final[i] = self.yiq2rgb(cv2.resize(final[i],(width, height),interpolation=cv2.INTER_CUBIC))
#防止数值超出[0, 255]
final[final<18] = (18-final[final<18])/(18-np.min(final))*18
final[final > 238] = 238+(final[final > 238]-238)/(np.max(final)-238)*17
return final
def run(self, img_seq):
return self.magnify_motion(img_seq, self.fps, self.low, self.high, self.level, self.alpha, self.lam_c, self.iq_reduce).astype('int')