From bc04932e793a8c35f341910b8b8c19c17812f030 Mon Sep 17 00:00:00 2001 From: RainerHeintzmann Date: Mon, 22 Jul 2024 17:37:18 +0200 Subject: [PATCH] added the @generated tag to allow arbitrary dimensions --- src/polynomials.jl | 104 +++++++++++++++++++++++++++------------------ 1 file changed, 62 insertions(+), 42 deletions(-) diff --git a/src/polynomials.jl b/src/polynomials.jl index 2a65819..969dc3f 100644 --- a/src/polynomials.jl +++ b/src/polynomials.jl @@ -1,8 +1,6 @@ export get_multi_poly, get_num_poly_vars, get_num_multipoly_vars export polynomial -# using Unrolled - """ polynomial(::Val{0}, ::T1, c::T2, ::Val{cstart}=Val(1), ::Val{numvars}=Val(1)) where {NV, TS, T1 <: NTuple{NV, Integer}, T2 <: NTuple{TS, Float32}, cstart, numvars} @@ -41,45 +39,67 @@ Example: 0.000089 seconds (3 allocations: 184 bytes) ``` """ -function polynomial(::Val{N}, t::T1, c::T2, ::Val{cstart}=Val(1), ::Val{numvars}=Val(length(t)))::Float32 where {N, NV, TS, T1 <: NTuple{NV, Integer}, T2 <: NTuple{TS, Float32}, cstart, numvars} - c_start = cstart - res = c[c_start] - c_start += 1 - # iterate through the polynomial variables: (but this leads to dynamic memory allocation!) - # for n = 1:numvars # eachindex(t) # 1:length(t) # eachindex(t) # 1:length(t) - # # c_end = c_start + get_num_poly_vars(Val(n), Val(N-1)) - 1 - # res += t[n] * polynomial(Val(N-1), t, c, Val(c_start), Val(n)) - # c_start += get_num_poly_vars(Val(n), Val(N-1)) # c_end + 1 - # end - # # does not work: - # @macroexpand Base.Cartesian.@nexprs 4 n -> begin - # if (numvars >= n) - # res += t[n] * polynomial(Val(N-1), t, c, Val(c_start), Val(n)) - # c_start += get_num_poly_vars(Val(n), Val(N-1)) # c_end + 1 - # end - # end - - # this simply unrolls the loop by hand (up to 4D input variables): - if numvars >= 1 - res += t[1] * polynomial(Val(N-1), t, c, Val(c_start), Val(1)) - c_start += get_num_poly_vars(Val(1), Val(N-1)) # c_end + 1 - end - if numvars >= 2 - res += t[2] * polynomial(Val(N-1), t, c, Val(c_start), Val(2)) - c_start += get_num_poly_vars(Val(2), Val(N-1)) # c_end + 1 - end - if numvars >= 3 - res += t[3] * polynomial(Val(N-1), t, c, Val(c_start), Val(3)) - c_start += get_num_poly_vars(Val(3), Val(N-1)) # c_end + 1 - end - if numvars >= 4 - res += t[4] * polynomial(Val(N-1), t, c, Val(c_start), Val(4)) - c_start += get_num_poly_vars(Val(4), Val(N-1)) # c_end + 1 - end - if numvars >= 5 - error("Only up to 4 dimensions are currently supported for polynomials") +@generated function polynomial(::Val{N}, t::T1, c::T2, ::Val{cstart}=Val(1), ::Val{numvars}=Val(length(t)))::Float32 where {N, NV, TS, T1 <: NTuple{NV, Integer}, T2 <: NTuple{TS, Float32}, cstart, numvars} + quote + c_start = cstart + res = c[c_start] + c_start += 1 + # iterate through the polynomial variables: (but this leads to dynamic memory allocation!) + # for n = 1:numvars # eachindex(t) # 1:length(t) # eachindex(t) # 1:length(t) + # # c_end = c_start + get_num_poly_vars(Val(n), Val(N-1)) - 1 + # res += t[n] * polynomial(Val(N-1), t, c, Val(c_start), Val(n)) + # c_start += get_num_poly_vars(Val(n), Val(N-1)) # c_end + 1 + # end + # # does not work: + # @macroexpand Base.Cartesian.@nexprs 4 n -> begin + # if (numvars >= n) + # res += t[n] * polynomial(Val(N-1), t, c, Val(c_start), Val(n)) + # c_start += get_num_poly_vars(Val(n), Val(N-1)) # c_end + 1 + # end + # end + + # @generated function myvarsum(t, c, res, c_start, ::Val{numvars}) where {N} + # quote + # c_start = cstart + # res = c[c_start] + # c_start += 1 + # Base.Cartesian.@nexprs $N i A n -> begin + # res += t[n] * polynomial(Val(N-1), t, c, Val(c_start), Val(n)) + # c_start += get_num_poly_vars(Val(n), Val(N-1)) # c_end + 1 + # end + # res, c_start + # end + # end + + Base.Cartesian.@nexprs $numvars n -> begin + res += t[n] * polynomial(Val(N-1), t, c, Val(c_start), Val(n)) + c_start += get_num_poly_vars(Val(n), Val(N-1)) # c_end + 1 + end + # if numvars > 5 + # error("Only up to 5 dimensions are currently supported for polynomials") + # end + # this simply unrolls the loop by hand (up to 4D input variables): + # if numvars >= 1 + # res += t[1] * polynomial(Val(N-1), t, c, Val(c_start), Val(1)) + # c_start += get_num_poly_vars(Val(1), Val(N-1)) # c_end + 1 + # end + # if numvars >= 2 + # res += t[2] * polynomial(Val(N-1), t, c, Val(c_start), Val(2)) + # c_start += get_num_poly_vars(Val(2), Val(N-1)) # c_end + 1 + # end + # if numvars >= 3 + # res += t[3] * polynomial(Val(N-1), t, c, Val(c_start), Val(3)) + # c_start += get_num_poly_vars(Val(3), Val(N-1)) # c_end + 1 + # end + # if numvars >= 4 + # res += t[4] * polynomial(Val(N-1), t, c, Val(c_start), Val(4)) + # c_start += get_num_poly_vars(Val(4), Val(N-1)) # c_end + 1 + # end + # if numvars >= 5 + # error("Only up to 4 dimensions are currently supported for polynomials") + # end + return res end - return res end @@ -125,7 +145,7 @@ function test_poly_allocations() # p = get_polynomial(Val(2), Val(3)) # @time p.(Tuple.(CartesianIndices((200,200))),Ref((1.1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27))); - polynomial(Val(2), (2f0, 20f0), (1f0, 1f0, 1f0, 1f0, 1f0, 1f0)) == 467 + polynomial(Val(2), (2, 20), (1f0, 1f0, 1f0, 1f0, 1f0, 1f0)) == 467 cids = Tuple.(CartesianIndices((200,200))) # cfds = map((t)->Tuple(Float32.([t...])), cids) @@ -136,7 +156,7 @@ function test_poly_allocations() # 0.000122 seconds (3 allocations: 168 bytes) get_num_poly_vars(Val(3), Val(2)) # 10 indices required - @time res .= polynomial.(Ref(Val(3)), cids, Ref(cs)); # 2 orders, two variables + @time res .= polynomial.(Ref(Val(3)), cids, Ref(cs)); # 3 orders, two variables # 0.003710 seconds (240.00 k allocations: 13.428 MiB) get_num_poly_vars(Val(4), Val(2)) # 15 indices required