forked from jensengroup/xyz2mol
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathxyz2mol.py
825 lines (621 loc) · 22.7 KB
/
xyz2mol.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
"""
Module for generating rdkit molobj/smiles/molecular graph from free atoms
Implementation by Jan H. Jensen, based on the paper
Yeonjoon Kim and Woo Youn Kim
"Universal Structure Conversion Method for Organic Molecules: From Atomic Connectivity
to Three-Dimensional Geometry"
Bull. Korean Chem. Soc. 2015, Vol. 36, 1769-1777
DOI: 10.1002/bkcs.10334
"""
import copy
import itertools
from rdkit.Chem import rdmolops
from rdkit.Chem import rdchem
try:
from rdkit.Chem import rdEHTTools #requires RDKit 2019.9.1 or later
except ImportError:
rdEHTTools = None
from collections import defaultdict
import numpy as np
import networkx as nx
from rdkit import Chem
from rdkit.Chem import AllChem, rdmolops
import sys
global __ATOM_LIST__
__ATOM_LIST__ = \
['h', 'he',
'li', 'be', 'b', 'c', 'n', 'o', 'f', 'ne',
'na', 'mg', 'al', 'si', 'p', 's', 'cl', 'ar',
'k', 'ca', 'sc', 'ti', 'v ', 'cr', 'mn', 'fe', 'co', 'ni', 'cu',
'zn', 'ga', 'ge', 'as', 'se', 'br', 'kr',
'rb', 'sr', 'y', 'zr', 'nb', 'mo', 'tc', 'ru', 'rh', 'pd', 'ag',
'cd', 'in', 'sn', 'sb', 'te', 'i', 'xe',
'cs', 'ba', 'la', 'ce', 'pr', 'nd', 'pm', 'sm', 'eu', 'gd', 'tb', 'dy',
'ho', 'er', 'tm', 'yb', 'lu', 'hf', 'ta', 'w', 're', 'os', 'ir', 'pt',
'au', 'hg', 'tl', 'pb', 'bi', 'po', 'at', 'rn',
'fr', 'ra', 'ac', 'th', 'pa', 'u', 'np', 'pu']
global atomic_valence
global atomic_valence_electrons
atomic_valence = defaultdict(list)
atomic_valence[1] = [1]
atomic_valence[5] = [3,4]
atomic_valence[6] = [4]
atomic_valence[7] = [3,4]
atomic_valence[8] = [2,1,3]
atomic_valence[9] = [1]
atomic_valence[14] = [4]
atomic_valence[15] = [5,3] #[5,4,3]
atomic_valence[16] = [6,3,2] #[6,4,2]
atomic_valence[17] = [1]
atomic_valence[32] = [4]
atomic_valence[35] = [1]
atomic_valence[53] = [1]
atomic_valence_electrons = {}
atomic_valence_electrons[1] = 1
atomic_valence_electrons[5] = 3
atomic_valence_electrons[6] = 4
atomic_valence_electrons[7] = 5
atomic_valence_electrons[8] = 6
atomic_valence_electrons[9] = 7
atomic_valence_electrons[14] = 4
atomic_valence_electrons[15] = 5
atomic_valence_electrons[16] = 6
atomic_valence_electrons[17] = 7
atomic_valence_electrons[32] = 4
atomic_valence_electrons[35] = 7
atomic_valence_electrons[53] = 7
def str_atom(atom):
"""
convert integer atom to string atom
"""
global __ATOM_LIST__
atom = __ATOM_LIST__[atom - 1]
return atom
def int_atom(atom):
"""
convert str atom to integer atom
"""
global __ATOM_LIST__
#print(atom)
atom = atom.lower()
return __ATOM_LIST__.index(atom) + 1
def get_UA(maxValence_list, valence_list):
"""
"""
UA = []
DU = []
for i, (maxValence, valence) in enumerate(zip(maxValence_list, valence_list)):
if not maxValence - valence > 0:
continue
UA.append(i)
DU.append(maxValence - valence)
return UA, DU
def get_BO(AC, UA, DU, valences, UA_pairs, use_graph=True):
"""
"""
BO = AC.copy()
DU_save = []
while DU_save != DU:
for i, j in UA_pairs:
BO[i, j] += 1
BO[j, i] += 1
BO_valence = list(BO.sum(axis=1))
DU_save = copy.copy(DU)
UA, DU = get_UA(valences, BO_valence)
UA_pairs = get_UA_pairs(UA, AC, use_graph=use_graph)[0]
return BO
def valences_not_too_large(BO, valences):
"""
"""
number_of_bonds_list = BO.sum(axis=1)
for valence, number_of_bonds in zip(valences, number_of_bonds_list):
if number_of_bonds > valence:
return False
return True
def charge_is_OK(BO, AC, charge, DU, atomic_valence_electrons, atoms, valences,
allow_charged_fragments=True):
# total charge
Q = 0
# charge fragment list
q_list = []
if allow_charged_fragments:
BO_valences = list(BO.sum(axis=1))
for i, atom in enumerate(atoms):
q = get_atomic_charge(atom, atomic_valence_electrons[atom], BO_valences[i])
Q += q
if atom == 6:
number_of_single_bonds_to_C = list(BO[i, :]).count(1)
if number_of_single_bonds_to_C == 2 and BO_valences[i] == 2:
Q += 1
q = 2
if number_of_single_bonds_to_C == 3 and Q + 1 < charge:
Q += 2
q = 1
if q != 0:
q_list.append(q)
return (charge == Q)
def BO_is_OK(BO, AC, charge, DU, atomic_valence_electrons, atoms, valences,
allow_charged_fragments=True):
"""
Sanity of bond-orders
args:
BO -
AC -
charge -
DU -
optional
allow_charges_fragments -
returns:
boolean - true of molecule is OK, false if not
"""
if not valences_not_too_large(BO, valences):
return False
check_sum = (BO - AC).sum() == sum(DU)
check_charge = charge_is_OK(BO, AC, charge, DU, atomic_valence_electrons, atoms, valences,
allow_charged_fragments)
if check_charge and check_sum:
return True
return False
def get_atomic_charge(atom, atomic_valence_electrons, BO_valence):
"""
"""
if atom == 1:
charge = 1 - BO_valence
elif atom == 5:
charge = 3 - BO_valence
elif atom == 15 and BO_valence == 5:
charge = 0
elif atom == 16 and BO_valence == 6:
charge = 0
else:
charge = atomic_valence_electrons - 8 + BO_valence
return charge
def clean_charges(mol):
"""
This hack should not be needed anymore, but is kept just in case
"""
Chem.SanitizeMol(mol)
#rxn_smarts = ['[N+:1]=[*:2]-[C-:3]>>[N+0:1]-[*:2]=[C-0:3]',
# '[N+:1]=[*:2]-[O-:3]>>[N+0:1]-[*:2]=[O-0:3]',
# '[N+:1]=[*:2]-[*:3]=[*:4]-[O-:5]>>[N+0:1]-[*:2]=[*:3]-[*:4]=[O-0:5]',
# '[#8:1]=[#6:2]([!-:6])[*:3]=[*:4][#6-:5]>>[*-:1][*:2]([*:6])=[*:3][*:4]=[*+0:5]',
# '[O:1]=[c:2][c-:3]>>[*-:1][*:2][*+0:3]',
# '[O:1]=[C:2][C-:3]>>[*-:1][*:2]=[*+0:3]']
rxn_smarts = ['[#6,#7:1]1=[#6,#7:2][#6,#7:3]=[#6,#7:4][CX3-,NX3-:5][#6,#7:6]1=[#6,#7:7]>>'
'[#6,#7:1]1=[#6,#7:2][#6,#7:3]=[#6,#7:4][-0,-0:5]=[#6,#7:6]1[#6-,#7-:7]',
'[#6,#7:1]1=[#6,#7:2][#6,#7:3](=[#6,#7:4])[#6,#7:5]=[#6,#7:6][CX3-,NX3-:7]1>>'
'[#6,#7:1]1=[#6,#7:2][#6,#7:3]([#6-,#7-:4])=[#6,#7:5][#6,#7:6]=[-0,-0:7]1']
fragments = Chem.GetMolFrags(mol,asMols=True,sanitizeFrags=False)
for i, fragment in enumerate(fragments):
for smarts in rxn_smarts:
patt = Chem.MolFromSmarts(smarts.split(">>")[0])
while fragment.HasSubstructMatch(patt):
rxn = AllChem.ReactionFromSmarts(smarts)
ps = rxn.RunReactants((fragment,))
fragment = ps[0][0]
Chem.SanitizeMol(fragment)
if i == 0:
mol = fragment
else:
mol = Chem.CombineMols(mol, fragment)
return mol
def BO2mol(mol, BO_matrix, atoms, atomic_valence_electrons,
mol_charge, allow_charged_fragments=True, use_atom_maps=False):
"""
based on code written by Paolo Toscani
From bond order, atoms, valence structure and total charge, generate an
rdkit molecule.
args:
mol - rdkit molecule
BO_matrix - bond order matrix of molecule
atoms - list of integer atomic symbols
atomic_valence_electrons -
mol_charge - total charge of molecule
optional:
allow_charged_fragments - bool - allow charged fragments
returns
mol - updated rdkit molecule with bond connectivity
"""
l = len(BO_matrix)
l2 = len(atoms)
BO_valences = list(BO_matrix.sum(axis=1))
if (l != l2):
raise RuntimeError('sizes of adjMat ({0:d}) and Atoms {1:d} differ'.format(l, l2))
rwMol = Chem.RWMol(mol)
bondTypeDict = {
1: Chem.BondType.SINGLE,
2: Chem.BondType.DOUBLE,
3: Chem.BondType.TRIPLE
}
for i in range(l):
for j in range(i + 1, l):
bo = int(round(BO_matrix[i, j]))
if (bo == 0):
continue
bt = bondTypeDict.get(bo, Chem.BondType.SINGLE)
rwMol.AddBond(i, j, bt)
mol = rwMol.GetMol()
if allow_charged_fragments:
mol = set_atomic_charges(
mol,
atoms,
atomic_valence_electrons,
BO_valences,
BO_matrix,
mol_charge,
use_atom_maps)
else:
mol = set_atomic_radicals(mol, atoms, atomic_valence_electrons, BO_valences,
use_atom_maps)
return mol
def set_atomic_charges(mol, atoms, atomic_valence_electrons,
BO_valences, BO_matrix, mol_charge,
use_atom_maps):
"""
"""
q = 0
for i, atom in enumerate(atoms):
a = mol.GetAtomWithIdx(i)
if use_atom_maps:
a.SetAtomMapNum(i+1)
charge = get_atomic_charge(atom, atomic_valence_electrons[atom], BO_valences[i])
q += charge
if atom == 6:
number_of_single_bonds_to_C = list(BO_matrix[i, :]).count(1)
if number_of_single_bonds_to_C == 2 and BO_valences[i] == 2:
q += 1
charge = 0
if number_of_single_bonds_to_C == 3 and q + 1 < mol_charge:
q += 2
charge = 1
if (abs(charge) > 0):
a.SetFormalCharge(int(charge))
#mol = clean_charges(mol)
return mol
def set_atomic_radicals(mol, atoms, atomic_valence_electrons, BO_valences,
use_atom_maps):
"""
The number of radical electrons = absolute atomic charge
"""
for i, atom in enumerate(atoms):
a = mol.GetAtomWithIdx(i)
if use_atom_maps:
a.SetAtomMapNum(i+1)
charge = get_atomic_charge(
atom,
atomic_valence_electrons[atom],
BO_valences[i])
if (abs(charge) > 0):
a.SetNumRadicalElectrons(abs(int(charge)))
return mol
def get_bonds(UA, AC):
"""
"""
bonds = []
for k, i in enumerate(UA):
for j in UA[k + 1:]:
if AC[i, j] == 1:
bonds.append(tuple(sorted([i, j])))
return bonds
def get_UA_pairs(UA, AC, use_graph=True):
"""
"""
bonds = get_bonds(UA, AC)
if len(bonds) == 0:
return [()]
if use_graph:
G = nx.Graph()
G.add_edges_from(bonds)
UA_pairs = [list(nx.max_weight_matching(G))]
return UA_pairs
max_atoms_in_combo = 0
UA_pairs = [()]
for combo in list(itertools.combinations(bonds, int(len(UA) / 2))):
flat_list = [item for sublist in combo for item in sublist]
atoms_in_combo = len(set(flat_list))
if atoms_in_combo > max_atoms_in_combo:
max_atoms_in_combo = atoms_in_combo
UA_pairs = [combo]
elif atoms_in_combo == max_atoms_in_combo:
UA_pairs.append(combo)
return UA_pairs
def AC2BO(AC, atoms, charge, allow_charged_fragments=True, use_graph=True):
"""
implemenation of algorithm shown in Figure 2
UA: unsaturated atoms
DU: degree of unsaturation (u matrix in Figure)
best_BO: Bcurr in Figure
"""
global atomic_valence
global atomic_valence_electrons
# make a list of valences, e.g. for CO: [[4],[2,1]]
valences_list_of_lists = []
AC_valence = list(AC.sum(axis=1))
for i,(atomicNum,valence) in enumerate(zip(atoms,AC_valence)):
# valence can't be smaller than number of neighbourgs
possible_valence = [x for x in atomic_valence[atomicNum] if x >= valence]
if not possible_valence:
print('Valence of atom',i,'is',valence,'which bigger than allowed max',max(atomic_valence[atomicNum]),'. Stopping')
sys.exit()
valences_list_of_lists.append(possible_valence)
# convert [[4],[2,1]] to [[4,2],[4,1]]
valences_list = itertools.product(*valences_list_of_lists)
best_BO = AC.copy()
for valences in valences_list:
UA, DU_from_AC = get_UA(valences, AC_valence)
check_len = (len(UA) == 0)
if check_len:
check_bo = BO_is_OK(AC, AC, charge, DU_from_AC,
atomic_valence_electrons, atoms, valences,
allow_charged_fragments=allow_charged_fragments)
else:
check_bo = None
if check_len and check_bo:
return AC, atomic_valence_electrons
UA_pairs_list = get_UA_pairs(UA, AC, use_graph=use_graph)
for UA_pairs in UA_pairs_list:
BO = get_BO(AC, UA, DU_from_AC, valences, UA_pairs, use_graph=use_graph)
status = BO_is_OK(BO, AC, charge, DU_from_AC,
atomic_valence_electrons, atoms, valences,
allow_charged_fragments=allow_charged_fragments)
charge_OK = charge_is_OK(BO, AC, charge, DU_from_AC, atomic_valence_electrons, atoms, valences,
allow_charged_fragments=allow_charged_fragments)
if status:
return BO, atomic_valence_electrons
elif BO.sum() >= best_BO.sum() and valences_not_too_large(BO, valences) and charge_OK:
best_BO = BO.copy()
return best_BO, atomic_valence_electrons
def AC2mol(mol, AC, atoms, charge, allow_charged_fragments=True,
use_graph=True, use_atom_maps=False):
"""
"""
# convert AC matrix to bond order (BO) matrix
BO, atomic_valence_electrons = AC2BO(
AC,
atoms,
charge,
allow_charged_fragments=allow_charged_fragments,
use_graph=use_graph)
# add BO connectivity and charge info to mol object
mol = BO2mol(
mol,
BO,
atoms,
atomic_valence_electrons,
charge,
allow_charged_fragments=allow_charged_fragments,
use_atom_maps=use_atom_maps)
# If charge is not correct don't return mol
if Chem.GetFormalCharge(mol) != charge:
return []
# BO2mol returns an arbitrary resonance form. Let's make the rest
mols = rdchem.ResonanceMolSupplier(mol, Chem.UNCONSTRAINED_CATIONS, Chem.UNCONSTRAINED_ANIONS)
mols = [mol for mol in mols]
return mols
def get_proto_mol(atoms):
"""
"""
mol = Chem.MolFromSmarts("[#" + str(atoms[0]) + "]")
rwMol = Chem.RWMol(mol)
for i in range(1, len(atoms)):
a = Chem.Atom(atoms[i])
rwMol.AddAtom(a)
mol = rwMol.GetMol()
return mol
def read_xyz_file(filename, look_for_charge=True):
"""
"""
atomic_symbols = []
xyz_coordinates = []
charge = 0
title = ""
with open(filename, "r") as file:
for line_number, line in enumerate(file):
if line_number == 0:
num_atoms = int(line)
elif line_number == 1:
title = line
if "charge=" in line:
charge = int(line.split("=")[1])
else:
atomic_symbol, x, y, z = line.split()
atomic_symbols.append(atomic_symbol)
xyz_coordinates.append([float(x), float(y), float(z)])
atoms = [int_atom(atom) for atom in atomic_symbols]
return atoms, charge, xyz_coordinates
def xyz2AC(atoms, xyz, charge, use_huckel=False):
"""
atoms and coordinates to atom connectivity (AC)
args:
atoms - int atom types
xyz - coordinates
charge - molecule charge
optional:
use_huckel - Use Huckel method for atom connecitivty
returns
ac - atom connectivity matrix
mol - rdkit molecule
"""
if use_huckel:
return xyz2AC_huckel(atoms, xyz, charge)
else:
return xyz2AC_vdW(atoms, xyz)
def xyz2AC_vdW(atoms, xyz):
# Get mol template
mol = get_proto_mol(atoms)
# Set coordinates
conf = Chem.Conformer(mol.GetNumAtoms())
for i in range(mol.GetNumAtoms()):
conf.SetAtomPosition(i, (xyz[i][0], xyz[i][1], xyz[i][2]))
mol.AddConformer(conf)
AC = get_AC(mol)
return AC, mol
def get_AC(mol, covalent_factor=1.3):
"""
Generate adjacent matrix from atoms and coordinates.
AC is a (num_atoms, num_atoms) matrix with 1 being covalent bond and 0 is not
covalent_factor - 1.3 is an arbitrary factor
args:
mol - rdkit molobj with 3D conformer
optional
covalent_factor - increase covalent bond length threshold with facto
returns:
AC - adjacent matrix
"""
# Calculate distance matrix
dMat = Chem.Get3DDistanceMatrix(mol)
pt = Chem.GetPeriodicTable()
num_atoms = mol.GetNumAtoms()
AC = np.zeros((num_atoms, num_atoms), dtype=int)
for i in range(num_atoms):
a_i = mol.GetAtomWithIdx(i)
Rcov_i = pt.GetRcovalent(a_i.GetAtomicNum()) * covalent_factor
for j in range(i + 1, num_atoms):
a_j = mol.GetAtomWithIdx(j)
Rcov_j = pt.GetRcovalent(a_j.GetAtomicNum()) * covalent_factor
if dMat[i, j] <= Rcov_i + Rcov_j:
AC[i, j] = 1
AC[j, i] = 1
return AC
def xyz2AC_huckel(atomicNumList, xyz, charge):
"""
args
atomicNumList - atom type list
xyz - coordinates
charge - molecule charge
returns
ac - atom connectivity
mol - rdkit molecule
"""
mol = get_proto_mol(atomicNumList)
conf = Chem.Conformer(mol.GetNumAtoms())
for i in range(mol.GetNumAtoms()):
conf.SetAtomPosition(i,(xyz[i][0],xyz[i][1],xyz[i][2]))
mol.AddConformer(conf)
num_atoms = len(atomicNumList)
AC = np.zeros((num_atoms,num_atoms)).astype(int)
mol_huckel = Chem.Mol(mol)
mol_huckel.GetAtomWithIdx(0).SetFormalCharge(charge) #mol charge arbitrarily added to 1st atom
passed,result = rdEHTTools.RunMol(mol_huckel)
opop = result.GetReducedOverlapPopulationMatrix()
tri = np.zeros((num_atoms, num_atoms))
tri[np.tril(np.ones((num_atoms, num_atoms), dtype=bool))] = opop #lower triangular to square matrix
for i in range(num_atoms):
for j in range(i+1,num_atoms):
pair_pop = abs(tri[j,i])
if pair_pop >= 0.15: #arbitry cutoff for bond. May need adjustment
AC[i,j] = 1
AC[j,i] = 1
return AC, mol
def chiral_stereo_check(mol):
"""
Find and embed chiral information into the model based on the coordinates
args:
mol - rdkit molecule, with embeded conformer
"""
Chem.SanitizeMol(mol)
Chem.DetectBondStereochemistry(mol, -1)
Chem.AssignStereochemistry(mol, flagPossibleStereoCenters=True, force=True)
Chem.AssignAtomChiralTagsFromStructure(mol, -1)
return
def xyz2mol(atoms, coordinates, charge=0, allow_charged_fragments=True,
use_graph=True, use_huckel=False, embed_chiral=True,
use_atom_maps=False):
"""
Generate a rdkit molobj from atoms, coordinates and a total_charge.
args:
atoms - list of atom types (int)
coordinates - 3xN Cartesian coordinates
charge - total charge of the system (default: 0)
optional:
allow_charged_fragments - alternatively radicals are made
use_graph - use graph (networkx)
use_huckel - Use Huckel method for atom connectivity prediction
embed_chiral - embed chiral information to the molecule
returns:
mols - list of rdkit molobjects
"""
# Get atom connectivity (AC) matrix, list of atomic numbers, molecular charge,
# and mol object with no connectivity information
AC, mol = xyz2AC(atoms, coordinates, charge, use_huckel=use_huckel)
# Convert AC to bond order matrix and add connectivity and charge info to
# mol object
new_mols = AC2mol(mol, AC, atoms, charge,
allow_charged_fragments=allow_charged_fragments,
use_graph=use_graph,
use_atom_maps=use_atom_maps)
# Check for stereocenters and chiral centers
if embed_chiral:
for new_mol in new_mols:
chiral_stereo_check(new_mol)
return new_mols
def main():
return
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(usage='%(prog)s [options] molecule.xyz')
parser.add_argument('structure', metavar='structure', type=str)
parser.add_argument('-s', '--sdf',
action="store_true",
help="Dump sdf file")
parser.add_argument('--ignore-chiral',
action="store_true",
help="Ignore chiral centers")
parser.add_argument('--no-charged-fragments',
action="store_true",
help="Allow radicals to be made")
parser.add_argument('--no-graph',
action="store_true",
help="Run xyz2mol without networkx dependencies")
# huckel uses extended Huckel bond orders to locate bonds (requires RDKit 2019.9.1 or later)
# otherwise van der Waals radii are used
parser.add_argument('--use-huckel',
action="store_true",
help="Use Huckel method for atom connectivity")
parser.add_argument('-o', '--output-format',
action="store",
type=str,
help="Output format [smiles,sdf] (default=sdf)")
parser.add_argument('-c', '--charge',
action="store",
metavar="int",
type=int,
help="Total charge of the system")
args = parser.parse_args()
# read xyz file
filename = args.structure
# allow for charged fragments, alternatively radicals are made
charged_fragments = not args.no_charged_fragments
# quick is faster for large systems but requires networkx
# if you don't want to install networkx set quick=False and
# uncomment 'import networkx as nx' at the top of the file
quick = not args.no_graph
# chiral comment
embed_chiral = not args.ignore_chiral
# read atoms and coordinates. Try to find the charge
atoms, charge, xyz_coordinates = read_xyz_file(filename)
# huckel uses extended Huckel bond orders to locate bonds (requires RDKit 2019.9.1 or later)
# otherwise van der Waals radii are used
use_huckel = args.use_huckel
# if explicit charge from args, set it
if args.charge is not None:
charge = int(args.charge)
# Get the molobjs
mols = xyz2mol(atoms, xyz_coordinates,
charge=charge,
use_graph=quick,
allow_charged_fragments=charged_fragments,
embed_chiral=embed_chiral,
use_huckel=use_huckel)
# Print output
for mol in mols:
if args.output_format == "sdf":
txt = Chem.MolToMolBlock(mol)
print(txt)
else:
# Canonical hack
isomeric_smiles = not args.ignore_chiral
smiles = Chem.MolToSmiles(mol, isomericSmiles=isomeric_smiles)
m = Chem.MolFromSmiles(smiles)
smiles = Chem.MolToSmiles(m, isomericSmiles=isomeric_smiles)
print(smiles)