forked from rrasheed/Rhythm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCMOSconverter.m
288 lines (259 loc) · 9.59 KB
/
CMOSconverter.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
function cmosData = CMOSconverter(olddir,oldfilename)
% Description: CMOSconverter is a function for extracting data from
% SciMedia's proprietary file format and saving it as a *.mat file for
% future use.
%
% INPUTS
% olddir = directory where file is located
% oldfilename = filename
%
% OUTPUT
% cmosData = pertinent data as saved in this structure including:
% + intensity = cmosData and cmosData2
% + analog channels = channel1 and channel2
% + time per frame = acqFrequency
% + rate of acquisition = frequency
% + background image = bgimage
% + dual camera setting = dual(1 - yes / 0 - no)
%
% REFERENCES
%
% ADDITIONAL NOTES
%
% RELEASE VERSION ?.?.?
%
% AUTHOR: SciMedia
%
% MAINTAINED BY: Christopher Gloschat - ([email protected]) - [Jan. 2015 - Present]
%
% MODIFICATION LOG:
%
% January 15, 2016 - SciMedia has released a new camera system with
% expanded capabilites. Part of this includes slight modifications to the
% established *.rsd format and the intorduction of the new *.gsd format. I
% have updated the code for the *.rsd changes and added code to recognzie
% and extract data from the *.gsd format.
%% Code
newfilename = [oldfilename(1:length(oldfilename)-3),'mat'];
dirname = [olddir,'/'];
%% RSH format data %%
if strcmp(oldfilename(end-2:end),'rsh')
% Read the file
disp(['converting ',oldfilename])
fid=fopen([dirname,oldfilename],'r','b');
fstr=fread(fid,'int8=>char')';
fclose(fid);
sampind2=strfind(fstr,'msec');
% Sampling frequency
acqFrontInd = strfind(fstr,'sample_time');
acqBackInd = sampind2-acqFrontInd;
[~,acqBackInd] = min(acqBackInd);
acqBackInd = sampind2(acqBackInd)-2;
acqFreq = str2double(fstr(acqFrontInd+13:acqBackInd));
% Dual cam
dualIndFront = strfind(fstr,'dual_cam');
% This values is separated from the next by a line break aka char(10)
dualIndBack = strfind(fstr(dualIndFront:dualIndFront+15),char(10))+dualIndFront-1;
dual = str2double(fstr(dualIndFront+9:dualIndBack-1));
% Save the frequency to put it in the .m file
if dual ~= 0 && strcmp(fstr(3),'U')
frequency = (1000/acqFreq)/2;
else
frequency = 1000/acqFreq;
end
% Locate the Data-File-List
dataFileListInd = strfind(fstr,'Data-File');
% Find the line breaks
lineBreaksInd = strfind(fstr(dataFileListInd:end),char(10))+dataFileListInd-1;
% Remove line break at end of string
if lineBreaksInd(end) == length(fstr)
lineBreaksInd = lineBreaksInd(1:end-1);
end
% Preallocate data file name variable
dataPaths = cell(length(lineBreaksInd),1);
% Grab data file names
for n = 1:length(lineBreaksInd)
if n == length(lineBreaksInd)
dataPaths{n} = fstr(lineBreaksInd(n)+1:end);
else
dataPaths{n} = fstr(lineBreaksInd(n)+1:lineBreaksInd(n+1));
end
charCheck = repmat((1:32)',[1 length(dataPaths{n})]);
tmp = repmat(dataPaths{n},[size(charCheck,1) 1]);
tmp = sum(charCheck == tmp);
tmp = (1:length(tmp)).*tmp;
tmp = unique(tmp);
tmp = tmp(2:end);
dataPaths{n}(tmp) = [];
end
% Read out CMOS data
num = length(dataPaths);
% Check for old file format
if strcmp(fstr(3),'U')
% Check for dual camera
if dual ~= 0
cmosData = int32(zeros(100,100,(num-1)*256/2));
cmosData2 = int32(zeros(100,100,(num-1)*256/2));
else
cmosData = int32(zeros(100,100,(num-1)*256));
end
else
% Preallocate for new file format
cmosData = int32(zeros(100,100,(num-1)*256));
end
% Analog inputs
channel = cell(2,1);
channel{1} = zeros(1,size(cmosData,3)*20);
channel{2} = zeros(1,size(cmosData,3)*20);
analogInd = 1:4:80;
k=0;
% k = 1;
for i = 2:num
fpath = [dirname dataPaths{i}];
fid=fopen(fpath,'r','l'); % use big-endian format
fdata=fread(fid,'int16=>int32')'; %
fclose(fid);
fdata = reshape(fdata,12800,[]);
% Specify step size based on single or dual camera
if dual ~= 0
step = 2;
else
step = 1;
end
for j = 1:step:size(fdata,2);
if dual == 0
oneframe = fdata(:,j); % one frame at certain time point
oneframe = reshape(oneframe,128,100);
cmosData(:,:,k*size(fdata,2)+j) = oneframe(21:120,:)';
% cmosData(:,:,k) = oneframe(21:120,:)';
else
newInd = (j+1)/2;
oneframe = fdata(:,j);
oneframe = reshape(oneframe,128,100);
cmosData(:,:,k*(size(fdata,2)/2)+newInd) = oneframe(21:120,:)';
oneframe2 = fdata(:,j+1);
oneframe2 = reshape(oneframe2,128,100);
cmosData2(:,:,k*(size(fdata,2)/2)+newInd) = oneframe2(21:120,:)';
end
chanInd = (1:length(analogInd))+length(analogInd)*(i-1);
oneFrameInd1 = sub2ind([size(oneframe,1) size(oneframe,2)],...
analogInd,repmat(3,[size(analogInd,1) size(analogInd,2)]));
channel{1}(chanInd) = oneframe(oneFrameInd1);
oneFrameInd2 = sub2ind([size(oneframe,1) size(oneframe,2)],...
analogInd,repmat(3,[size(analogInd,1) size(analogInd,2)]));
channel{2}(chanInd) = oneframe(oneFrameInd2);
% channel1(k) = oneframe(13,1)+oneframe(13,5); %needs to be improved
% channel2(k) = oneframe(15,2)+oneframe(15,6);
end
% incremement counter to step forward in time
k=k+1;
end
cmosData = cmosData(:,:,2:end);
if dual~=0
bgimage2 = cmosData2(:,:,1);
cmosData2 = cmosData2(:,:,2:end);
end
clear fdata
% Get background image for new file format
fid=fopen([dirname,[oldfilename(1:end-1) 'm']],'r','l');
fdata=fread(fid,'int16=>32')';
fclose(fid);
fdata = int32(reshape(fdata,12800,[]));
fdata = reshape(fdata,128,100);
bgimage = fdata(21:120,:)';
%% GSD data %%
else
% Open header file
fid=fopen([dirname,oldfilename],'r','b');
fstr=fread(fid,'int8=>char')';
fclose(fid);
% Grab header information
ind = strfind(fstr,'Frame');
numFrames = str2double(fstr(ind+13:ind+16));
ind = strfind(fstr,'Sampling');
acqFreq = str2double(fstr(ind+16:ind+19)); % in msec
frequency = 1000/acqFreq;
ind = strfind(fstr,'dual_cam');
dual = str2double(fstr(ind+10));
% Grab data %
fpath = [dirname oldfilename(1:end-3) 'gsd'];
% use big-endian format
fid=fopen(fpath,'r','l');
% Grab dimensions of data
status = fseek(fid,256,'bof');
xPixels = fread(fid,1,'short'); %nDataXsize
yPixels = fread(fid,1,'short'); %nDataYsize
xSkipPix = fread(fid,1,'short'); %nLeftSkip
ySkipPix = fread(fid,1,'short'); %nTopSkip
xActPix = fread(fid,1,'short'); %nImgXsize
yActPix = fread(fid,1,'short'); %nImgYsize
status = fseek(fid,328,'bof');
nChanum = fread(fid,1,'short');
nRate = fread(fid,1,'short'); %how many times faster analog acquisition is
analogFreq = 1000/(acqFreq*nRate);
% Grab background image
status = fseek(fid,972,'bof');
bgimage = fread(fid,xPixels*yPixels,'short');
bgimage = reshape(bgimage,[xPixels yPixels])';
bgimage = bgimage(ySkipPix+1:ySkipPix+yActPix,xSkipPix+1:xSkipPix+xActPix);
% Grab optical data
cmosData = fread(fid,xPixels*yPixels*numFrames,'short');
cmosData = reshape(cmosData,[xPixels yPixels numFrames]);
cmosData = cmosData(xSkipPix+1:xSkipPix+xActPix,ySkipPix+1:ySkipPix+yActPix,:);
if size(cmosData,1) ~= size(bgimage,1)
% For some reason images taken with D225 cameras need to be rotated
cmosData = flip(rot90(cmosData,3),2);
end
% Analog inputs
channel = cell(4,1);
for n = 1:4
if nChanum <= n
channel{n} = fread(fid,numFrames*nRate,'short');
else
channel{n} = zeros(1,numFrames*nRate);
end
end
end
%% Based on the assumption that the upstroke is downward, not upward.
len = size(cmosData,3);
thred = 2^16*3/4;
ind = reshape(1:size(cmosData,1)*size(cmosData,2),[size(cmosData,1) size(cmosData,2)]);
ind = repmat(ind,[1 1 len]);
step = reshape(0:size(cmosData,3)-1,[1 1 len]);
step = repmat(step*(size(cmosData,1)*size(cmosData,2)),[size(cmosData,1) size(cmosData,2) 1]);
ind = ind+step;
ind = ind(:,:,2:end);
%Identify signals that meet the criteria
check = abs(cmosData(:,:,2:end)-cmosData(:,:,1:end-1))>thred;
check = check.*ind;
check = unique(check);
check = check(2:end);
% For the values greater than zero
above = cmosData(check)>0;
cmosData(check(above)) = cmosData(check(above))-2^16;
% For the values less than zero
below = cmosData(check)<0;
cmosData(check(below)) = 2^16+cmosData(check(below));
cmosData = -cmosData;
if dual ~= 0
cmosData2 = -cmosData2;
end
% Build new filename
newfilename = [olddir,'/',newfilename];
%% conversion from CDS to DEF
cmosData=cmosData-repmat(bgimage,[1 1 size(cmosData,3)]);
if strcmp(fstr(3),'U')
if dual ~= 0
cmosData2=cmosData2-repmat(bgimage2,[1 1 size(cmosData2,3)]);
end
end
% Save data as a *.mat file
if strcmp(fstr(3),'U')
if dual == 0
save(newfilename,'cmosData','channel','acqFreq', 'frequency', 'bgimage','dual');
else
save(newfilename,'cmosData','cmosData2','channel','acqFreq','frequency','bgimage','bgimage2','dual');
end
else
save(newfilename,'cmosData','channel','acqFreq', 'frequency', 'bgimage','dual');
end