-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdj.py
238 lines (209 loc) · 10.1 KB
/
dj.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import dill as pickle
import os
from typing import TypedDict
import numpy as np
from polymath.polymath import Video
import warnings
import argparse
from collections import Counter
warnings.filterwarnings("ignore", category=np.VisibleDeprecationWarning)
from song_mixer import mix_audio_with_transition
from utils import *
# Create the parser
parser = argparse.ArgumentParser()
# Add the --force option
parser.add_argument('--force', '-f', action='store_true', help='Force the feature extraction process')
# Parse the arguments
args = parser.parse_args()
class Database(TypedDict):
id: str
song: Video
class AudioFeatures:
def __init__(self, id, tempo, duration, timbre, timbre_frames, pitch, pitch_frames, intensity, intensity_frames, volume, avg_volume, loudness, beats, segments_boundaries, segments_labels, frequency_frames, frequency, key):
self.id : str = id
self.tempo : float = tempo
self.duration : float = duration
self.timbre : np.float32 = timbre
self.timbre_frames : np.matrix = timbre_frames
self.pitch : np.float32 = pitch
self.pitch_frames : np.matrix = pitch_frames
self.intensity : float = intensity
self.intensity_frames : np.matrix = intensity_frames
self.volume : np.ndarray = volume
self.avg_volume : np.float32 = avg_volume
self.loudness : float = loudness
self.beats : np.ndarray = beats
self.segments_boundaries : np.ndarray = segments_boundaries
self.segments_labels : np.ndarray = segments_labels
self.frequency_frames : list = frequency_frames
self.frequency : float = frequency
self.key : str = key
song_database : Database = {}
# Load the song database
with open(r'polymath/library/database.p', 'rb') as f:
raw_song_database = pickle.load(f)
for song in raw_song_database:
song_database[song.id] = song
# Function to load audio features for a given song
def load_audio_features(song_id: str) -> AudioFeatures:
file_path = r'polymath/library/' + f"{song_id}.a"
if os.path.exists(file_path):
audio_features : AudioFeatures = None
with open(file_path, 'rb') as f:
raw_audio_features = pickle.load(f)
audio_features = AudioFeatures(
raw_audio_features['id'],
raw_audio_features['tempo'],
raw_audio_features['duration'],
raw_audio_features['timbre'],
raw_audio_features['timbre_frames'],
raw_audio_features['pitch'],
raw_audio_features['pitch_frames'],
raw_audio_features['intensity'],
raw_audio_features['intensity_frames'],
raw_audio_features['volume'],
raw_audio_features['avg_volume'],
raw_audio_features['loudness'],
raw_audio_features['beats'],
raw_audio_features['segments_boundaries'],
raw_audio_features['segments_labels'],
raw_audio_features['frequency_frames'],
raw_audio_features['frequency'],
raw_audio_features['key']
)
return audio_features
else:
return None
# Function to generate and save feature vectors if not exists
def generate_feature_vectors(song_database: Database):
feature_vectors = []
vector_mapping = []
# Iterate over all songs in the database
for song_id in song_database:
# Load audio features
audio_features = load_audio_features(song_id)
if audio_features is not None:
# For every segment in the song, extract the tempo, pitch, timbre, and intensity
# and create a feature vector mapped to the song id and segment index
for frame in audio_features.segments_boundaries:
segment_timestamp = custom_frame_to_time(frame)
# find the floor beat index for the segment
# beats need to be converted to floats for comparison
beat_idx = np.where(np.insert(audio_features.beats, 0, 0.) <= segment_timestamp)[0][-1] - 1
feature_vector = [
[audio_features.tempo],
audio_features.pitch_frames[beat_idx].tolist()[0],
audio_features.timbre_frames[beat_idx].tolist()[0],
audio_features.intensity_frames[beat_idx].tolist()[0]
]
feature_vectors.append(feature_vector)
vector_mapping.append((song_id, beat_idx))
with open('feature_vectors.pkl', 'wb') as f:
pickle.dump(feature_vectors, f)
with open('vector_mapping.pkl', 'wb') as f:
pickle.dump(vector_mapping, f)
# Function to load feature vectors
def load_feature_vectors():
if not os.path.exists('feature_vectors.pkl') or not os.path.exists('vector_mapping.pkl') or args.force:
generate_feature_vectors(song_database)
with open('feature_vectors.pkl', 'rb') as f:
feature_vectors = pickle.load(f)
with open('vector_mapping.pkl', 'rb') as f:
vector_mapping = pickle.load(f)
return feature_vectors, vector_mapping
def find_nearest_neighbors(skip_idxs, features, query_feature, k=5):
"""
Find the k nearest neighbors to a query feature in an array of features.
Args:
features (list): A list of features, where each feature is represented
by a list of 4 numpy arrays of varying lengths.
query_feature (list): The query feature, represented as a list of 4
numpy arrays.
k (int): The number of nearest neighbors to return (default: 5).
Returns:
list: A list of the indices of the k nearest neighbors in the features array.
"""
distances = []
for idx, feature in enumerate(features):
if idx in skip_idxs:
distances.append((float('inf'), idx))
continue
total_distance = 0
for arr1, arr2 in zip(feature, query_feature):
total_distance += np.sum((np.array(arr1) - np.array(arr2)) ** 2)
distances.append((float(np.sqrt(total_distance)), idx))
# sort the distances and indices based on distances
distances.sort(key=lambda x: x[0])
# # print top 10 distances
# for i in range(10):
# print(distances[i])
# extract the indices of the k nearest neighbors
nearest_indices = [index for distance, index in distances[:k]]
return nearest_indices
# Function to find the best next song after a segment
def find_next_song(current_song_id: str, current_segment_end: int):
'''
Find the best next song to play after a given segment in the current song.
Args:
current_song_id (str): The ID of the current song.
current_segment_end (int): The end time (in milliseconds) of the current segment.
Returns:
list: A list of tuples containing the ID, name, and start timestamp of the best next songs.
'''
current_audio_features = load_audio_features(current_song_id)
if current_audio_features is None:
return []
# Calulate the beat index for the current segment end
beat_idx = np.where(np.insert(current_audio_features.beats, 0, 0.) <= current_segment_end / 1000)[0][-1] - 1
# Calculate tempo, pitch, timbre, and intensity at the end of the current segment
current_segment_end_features = {
'tempo': [current_audio_features.tempo],
'pitch': current_audio_features.pitch_frames[beat_idx],
'timbre': current_audio_features.timbre_frames[beat_idx],
'intensity': current_audio_features.intensity_frames[beat_idx]
}
# Load feature vectors
feature_vectors, vector_mapping = load_feature_vectors()
# feature_vectors = np.array(feature_vectors)
skip_idxs = []
for idx, mapping in enumerate(vector_mapping):
if mapping[0] == current_song_id:
skip_idxs.append(idx)
# Find the nearest neighbors to the current segment end features
nearest_neighbors_indices = find_nearest_neighbors(skip_idxs, feature_vectors, list(current_segment_end_features.values()))
# Get the best next songs with timestamps
best_next_songs = []
for idx in nearest_neighbors_indices:
next_song, beat_offset = vector_mapping[idx]
song_metadata = song_database[next_song]
audio_features = load_audio_features(next_song)
beats = audio_features.beats
start_timestamp = float(beats[beat_offset]) * 1000
best_next_songs.append((next_song, song_metadata.name, start_timestamp))
return best_next_songs
def main():
# Example usage
current_song_id : str = '2uUmHTgT65I'
song_features = load_audio_features(current_song_id)
print("------------------------------------------------------------")
print("------------------------- AI DJ ----------------------------")
print("------------------------------------------------------------")
print("------------------------------------------------------------")
print(f"Suggesting for song: {song_database[current_song_id].name}")
print("------------------------------------------------------------")
# loop through all segments and find the best next song for each segment
for i, boundary in enumerate(song_features.segments_boundaries[1:-1]):
current_segment_end = custom_frame_to_time(boundary) * 1000
print(f"Segment {i + 1} at {current_segment_end / 1000} seconds")
best_next_songs = find_next_song(current_song_id, current_segment_end)
for song_id, song_name, start_timestamp in best_next_songs:
readable_seconds = milliseconds_to_readable(start_timestamp)
print(f"Id: {song_id}, Name: {song_name}, Start Timestamp: {readable_seconds}")
print()
# mix the first best next song with the current segment
song_id, song_name, start_timestamp = best_next_songs[0]
mixed_audio_path = mix_audio_with_transition(f"polymath/library/{current_song_id}.wav", f"polymath/library/{song_id}.wav", current_segment_end, start_timestamp, "crossfade", 2000)
print(f"Mixed audio path: {mixed_audio_path}")
print("------------------------------------------------------------")
if __name__ == "__main__":
main()