In this work, we formulate tokenization as an optimization objective, show that it is NP-hard via a simple reduction from vertex cover, and propose a polynomial-time greedy algorithm GreedTok.
Our formulation naturally relaxes to the well-studied weighted maximum coverage problem which has a simple
To do: Huggingface AutoTokenizer interface
-
If using python wrapper
a. Using pip (use the lightweight source code w/o data/notebooks):
wget "https://github.com/PreferredAI/pcatt/archive/refs/tags/v0.13.tar.gz" unzip pcatt-0.13.zip -d pcatt cd pcatt pip install -r requirements.txt pip install .
b. Or compile manually e.g. (have to specify links)
c++ -O3 -Wall -shared -std=c++20 \ -fPIC $(python3 -m pybind11 --includes) \ -I$CONDA_PREFIX/include/ \ -I$CONDA_PREFIX/include/tbb \ -I$CONDA_PREFIX/include/oneapi \ -L$CONDA_PREFIX/lib/ \ -l tbb \ ./pcatt/greedy_builder.cpp \ -o ./pcatt/greedy_builder$(python3-config --extension-suffix)
c. import and use! Examples in eval_tokenizer_example.ipynb
-
If using C++ files directly
a. Install dependencies for C++ code, we use oneTBB to parallelize the code, simplest way is to use Conda or pip:
conda install tbb-devel
b. Compile greedy_cache.py e.g.:
c++ -O3 -std=c++20 \ -I$CONDA_PREFIX/include/ \ -I$CONDA_PREFIX/include/tbb \ -I$CONDA_PREFIX/include/oneapi \ -L$CONDA_PREFIX/lib/ \ -l tbb \ pcatt/greedy_cache.cpp \ -o pcatt/greedy.exe
c. Prepare inputs (refer to cpp_inputs for examples):
- counts: a file with '\n' delimited integers
- words: a file with ' ' (space) delimited words
d. Run compiled program (currently looks for domain inputs in fixed path under cpp_inputs/*)
./greedy.exe <domain> <k>
e. Now we obtained our ranked token sequence (refer to cpp_outputs for examples):- merges: the number of covers at each step, delimited by '\n'
- tokens: byte sequences in hex-format, delimited by '\n'
Evaluations in eval_notebook.ipynb
@article{lim2025partition,
title={A partition cover approach to tokenization},
author={Lim, Jia Peng and Choo, Davin and Lauw, Hady W.},
year={2025},
journal={arXiv preprint arXiv:2501.06246},
url={https://arxiv.org/abs/2501.06246},
}