-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutils.py
161 lines (125 loc) · 4.78 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import numpy as np, os, re
def build_knowledge(train_instances, validate_instances):
MAX_LENGTH = 0
item_dict = {}
item_set = set()
for ins in train_instances:
parts = ins.split("=>")
for i in range(0,2):
seq = parts[i].split("|")
if len(seq) > MAX_LENGTH:
MAX_LENGTH = len(seq)
item_list = re.split('[#| ]+', parts[i])
for item in item_list:
item_set.add(item)
item_set.add(parts[2].rstrip())
for ins in validate_instances:
parts = ins.split("=>")
for i in range(0,2):
seq = parts[i].split("|")
if len(seq) > MAX_LENGTH:
MAX_LENGTH = len(seq)
item_list = re.split('[#| ]+', parts[i])
for item in item_list:
item_set.add(item)
item_set.add(parts[2].rstrip())
items = sorted(list(item_set))
for o in items:
item_dict[o] = len(item_dict)
return MAX_LENGTH, item_dict
def seq_batch_generator(raw_lines, item_dict, max_length, batch_size=32, is_train=True):
NB_ITEMS = len(item_dict)
total_batches = compute_total_batches(len(raw_lines), batch_size)
X_support = []
X_target = []
L_support = []
L_target = []
Y = []
O = []
batch_id = 0
while 1:
lines = raw_lines[:]
if is_train:
np.random.shuffle(lines)
for line in lines:
parts = line.split("=>")
support_seq = parts[0].split("|")
target_seq = parts[1].split("|")
target_item = parts[2].rstrip()
# Truncate if a sequence is too long
support_seq = truncate_seq(support_seq, max_length)
target_seq = truncate_seq(target_seq, max_length)
# Keep the length for dynamic_rnn
L_support.append(len(support_seq))
L_target.append(len(target_seq))
# The support sequence
Xs = np.zeros(shape=(max_length, NB_ITEMS), dtype=np.int32)
for t, basket in enumerate(support_seq):
basket = basket.split("#")[0] # Ignore not trained items
item_list = basket.rstrip().split()
Xs[t] = create_binary_vector(item_list, item_dict)
X_support.append(Xs)
# The target sequence
Xt = np.zeros(shape=(max_length, NB_ITEMS), dtype=np.int32)
for t, basket in enumerate(target_seq):
item_list = basket.rstrip().split()
Xt[t] = create_binary_vector(item_list, item_dict)
X_target.append(Xt)
# The predicted item
Y.append(create_binary_vector([target_item], item_dict))
O.append(target_item)
if len(Y) % batch_size == 0:
yield batch_id, ({'X_s': np.asarray(X_support), 'L_s': np.asarray(L_support)},
{'X_t': np.asarray(X_target), 'L_t': np.asarray(L_target)},
{'Y': np.asarray(Y), 'O': np.asarray(O)})
X_support = []
X_target = []
L_support = []
L_target = []
Y = []
O = []
batch_id += 1
if batch_id == total_batches:
batch_id = 0
if not is_train:
break
def create_binary_vector(item_list, item_dict):
v = np.zeros(len(item_dict), dtype='int32')
for item in item_list:
v[item_dict[item]] = 1
return v
def truncate_seq(seq, max_length):
seq_length = len(seq)
new_seq = seq[:]
if seq_length > max_length:
new_seq = new_seq[(seq_length - max_length):]
return new_seq
def list_dir(dir, directory_only=False):
rtn_list = []
for f in os.listdir(dir):
if directory_only and os.path.isdir(os.path.join(dir, f)):
rtn_list.append(f)
elif not directory_only and os.path.isfile(os.path.join(dir, f)):
rtn_list.append(f)
return rtn_list
def create_folder(dir):
try:
os.makedirs(dir)
except OSError:
pass
def read_file_as_lines(filePath):
with open(filePath, "r") as f:
lines = [line.rstrip('\n') for line in f]
return lines
def compute_total_batches(nb_intances, batch_size):
total_batches = int(nb_intances / batch_size)
if nb_intances % batch_size != 0:
total_batches += 1
return total_batches
def recent_model_dir(dir):
folder_list = list_dir(dir, True)
folder_list = sorted(folder_list, key=get_epoch)
return folder_list[-1]
def get_epoch(x):
idx = x.index('_') + 1
return int(x[idx:])