API
MetidaBioeq.bioequivalence
MetidaBioeq.bioequivalence
— Functionbioequivalence(data;
+ vars = nothing,
+ subject::Union{String, Symbol},
+ period::Union{String, Symbol, Nothing} = nothing,
+ formulation::Union{String, Symbol},
+ sequence::Union{String, Symbol, Nothing} = nothing,
+ stage::Union{String, Symbol, Nothing} = nothing,
+ reference::Union{String, Symbol, Nothing} = nothing,
+ design::Union{String, Symbol, Nothing} = nothing,
+ io::IO = stdout,
+ seqcheck::Bool = true,
+ designcheck::Bool = true,
+ dropcheck::Bool = true,
+ dropmissingsubj = false,
+ dropincompletesubj = false,
+ info::Bool = true,
+ warns::Bool = true,
+ autoseq::Bool = false,
+ logt::Bool = true)
vars
- variabel's column(s);subject
- subject's column;period
- period's column;formulation
- formulation's column;sequence
-sequence's column;stage
- stage's column;reference
- reference value forformulation
column;design
- design: "parallel", "2X2", "2X2X2", "2X2X4", ets. (formulations X sequences X periods);seqcheck
- check sequencs;designcheck
- check design correctness;dropcheck
- dropuot check;dropmissingsubj
- drop subjects with missing data;dropincompletesubj
- drop subjects with no full sequence data (work only ifseqcheck
= true);info
- show information;warns
- show warnings;autoseq
- try to make sequence collumn;logt
- iftrue
(default) data is already log-transformed, elselog()
will be used.
If dropmissingsubj
or dropincompletesubj
used - copy of the data will be filtered.
MetidaBioeq.estimate
MetidaBioeq.estimate
— Functionestimate(be; estimator = "auto", method = "auto", supresswarn = false)
method
- Model settings.
- if
method == "auto"
than methodA
used for "2X2" and "2X2X2" designes, methodP
for "parallel" design and methodB
for any other.
Methods:
A
using GLM and model@formula(var ~ formulation + period + sequence + subject)
B
using MixedModels and model@formula(var ~ formulation + period + sequence + (1|subject))
or Metida and model@lmmformula(v ~ formulation + period + sequence, random = 1|subject:SI)
C
using Metida and model@lmmformula(v ~ formulation + period + sequence, random = formulation|subject:CSH, repeated = formulation|subject:DIAG)
P
using GLM and model@formula(var ~ formulation)
estimator
- Estimator settings.
- if
estimator == "auto"
than GLM used for "parallel" design; for "2X2" design used GLM if no droputs and MixedModels ifdropout == true
; for other designes with methodC
Metida used and MixedModel for other cases.
Estimators:
- "glm" for GLM (https://juliastats.org/GLM.jl/stable/)
- "mm" for MixedModels (https://juliastats.org/MixedModels.jl/stable/)
- "met" for Metida (https://pharmcat.github.io/Metida.jl/stable/)
Other autosettings:
If design is "parallel" estimator
set as "glm" and method
as "P".
If design is "2X2" and method is "P" or "C" than if estimator
== "glm" method set as "A" and "B" for other estimators.
If design not "parallel" or "2X2":
if method not "A", "B" or "C" than set as "A" for "glm" ann as B for other estimators;
if estimator
== "glm" and method
== "B" than estimator
set as "mm", if estimator
== "glm" or "mm" and method
== "C" than estimator
set as "met".
Reference:
EMA: GUIDELINE ON THE INVESTIGATION OF BIOEQUIVALENCE
EMA: GUIDELINE ON THE INVESTIGATION OF BIOEQUIVALENCE, Annex I
MetidaBioeq.result
MetidaBioeq.result
— Functionresult(beres::BEResults)
Returns dataframe with bioequivalence results.
MetidaBioeq.makeseq
MetidaBioeq.makeseq
— Functionmakeseq(data;
+ subject = :subject,
+ period = :period,
+ formulation = :formulation)
Make sequence vector from data
and subject
, period
, formulation
columns.
MetidaBase
See https://github.com/PharmCat/MetidaBase.jl