diff --git a/ext/NEOsRecipesBaseExt.jl b/ext/NEOsRecipesBaseExt.jl index 992f8459..082a454e 100644 --- a/ext/NEOsRecipesBaseExt.jl +++ b/ext/NEOsRecipesBaseExt.jl @@ -13,11 +13,9 @@ end N::Int = 100, ρscale::Symbol = :linear) where {T <: Real} seriestype --> :path tmax = boundary == :outer ? 3 : 2 - ps = map(t -> arboundary(A, t, boundary), LinRange(0, tmax, N)) + ps = map(t -> arboundary(A, t, boundary, ρscale), LinRange(0, tmax, N)) xs, ys = first.(ps), last.(ps) - if ρscale == :log - xs .= log10.(xs) - end + return xs, ys end diff --git a/scripts/adam.jl b/scripts/adam.jl new file mode 100644 index 00000000..b7c2b9db --- /dev/null +++ b/scripts/adam.jl @@ -0,0 +1,214 @@ +using Distributed, ArgParse + +function parse_commandline() + s = ArgParseSettings() + + # Program name (for usage & help screen) + s.prog = "adam.jl" + # Desciption (for help screen) + s.description = """ + Evaluate `NEOs.adam` over `N` equally spaced points + in the boundary of a tracklet's admissible region.""" + + s.epilog = """ + Example:\n + \n + # Evaluate 100 points in the boundary of 2014AA.txt with 10 workers\n + # and 5 threads each\n + julia -p 10 -t 5 --project scripts/adam.jl -i 2014AA.txt -N 100\n + \n + """ + + @add_arg_table! s begin + "--input", "-i" + help = "input optical astrometry file" + arg_type = String + "--varorder", "-v" + help = "jet transport order" + arg_type = Int + default = 2 + "--N", "-N" + help = "number of points" + arg_type = Int + default = 100 + "--maxiter", "-m" + help = "maximum iterations per point" + arg_type = Int + default = 200 + end + + return parse_args(s) +end + +@everywhere begin + using NEOs, Dates, TaylorSeries, PlanetaryEphemeris, JLD2 + using NEOs: RadecMPC, AdmissibleRegion, PropagationBuffer, OpticalResidual, + attr2bary, propres!, boundary_projection, reduce_tracklets, arboundary + + function adam(radec::Vector{RadecMPC{T}}, A::AdmissibleRegion{T}, ρ::T, v_ρ::T, + params::NEOParameters{T}; scale::Symbol = :linear, η::T = 25.0, + μ::T = 0.75, ν::T = 0.9, ϵ::T = 1e-8, Qtol::T = 0.001, adamorder::Int = 2, + dynamics::D = newtonian!) where {T <: Real, D} + # Initial time of integration [julian days] + jd0 = datetime2julian(A.date) + # Maximum number of iterations + maxiter = params.adamiter + # Allocate memory + aes = Matrix{T}(undef, 6, maxiter+1) + Qs = fill(T(Inf), maxiter+1) + # Initial attributable elements + aes[:, 1] .= [A.α, A.δ, A.v_α, A.v_δ, ρ, v_ρ] + # Scaling factors + scalings = Vector{T}(undef, 6) + scalings[1:4] .= abs.(aes[1:4, 1]) ./ 1e6 + if scale == :linear + scalings[5] = (A.ρ_domain[2] - A.ρ_domain[1]) / 1_000 + elseif scale == :log + scalings[5] = (log10(A.ρ_domain[2]) - log10(A.ρ_domain[1])) / 1_000 + end + scalings[6] = (A.v_ρ_domain[2] - A.v_ρ_domain[1]) / 1_000 + # Jet transport variables + set_variables(Float64, "dx"; order = adamorder, numvars = 6) + dae = [scalings[i] * TaylorN(i, order = adamorder) for i in 1:6] + # Propagation buffer + t0, tf = datetime2days(date(radec[1])), datetime2days(date(radec[end])) + tlim = (t0 - params.bwdoffset, tf + params.fwdoffset) + buffer = PropagationBuffer(dynamics, jd0, tlim, aes[:, 1] .+ dae, params) + # Vector of O-C residuals + res = Vector{OpticalResidual{T, TaylorN{T}}}(undef, length(radec)) + # Origin + x0 = zeros(T, 6) + x1 = zeros(T, 6) + # Gradient of objective function wrt (ρ, v_ρ) + g_t = Vector{T}(undef, 2) + # First momentum + m = zeros(T, 2) + _m_ = zeros(T, 2) + # Second momentum + n = zeros(T, 2) + _n_ = zeros(T, 2) + # Gradient descent + for t in 1:maxiter + # Current attributable elements (plain) + ae = aes[:, t] + # Attributable elements (JT) + if scale == :linear + AE = ae + dae + elseif scale == :log + AE = [ae[1] + dae[1], ae[2] + dae[2], ae[3] + dae[3], + ae[4] + dae[4], 10^(log10(ae[5]) + dae[5]), ae[6] + dae[6]] + end + # Barycentric state vector + q = attr2bary(A, AE, params) + # Propagation and residuals + # TO DO: `ρ::TaylorN` is too slow for `adam` due to evaluations + # within the dynamical model + propres!(res, radec, jd0 - ae[5]/c_au_per_day, q, params; buffer, dynamics) + iszero(length(res)) && break + # Least squares fit + fit = tryls(res, x0, 5, 1:4) + x1 .= fit.x + # Current Q + Q = nms(res) + Q(x1) < 0 && break + Qs[t] = Q(x1) + # Convergence condition + t > 1 && abs(Qs[t] - Qs[t-1]) / Qs[t] < Qtol && break + # Gradient of objective function wrt (ρ, v_ρ) + g_t[1] = differentiate(Q, 5)(x1) + g_t[2] = differentiate(Q, 6)(x1) + # First momentum + m .= μ * m + (1 - μ) * g_t + _m_ .= m / (1 - μ^t) + # Second momentum + n .= ν * n + (1 - ν) * g_t .^ 2 + _n_ .= n / (1 - ν^t) + # Step + x1[5:6] = x1[5:6] - η * _m_ ./ (sqrt.(_n_) .+ ϵ) + # Update attributable elements + aes[:, t+1] .= AE(x1) + # Projection + aes[5:6, t+1] .= boundary_projection(A, aes[5, t+1], aes[6, t+1]) + end + + return aes, Qs + end +end + +function main() + # Initial time + init_time = now() + # Parse arguments from commandline + parsed_args = parse_commandline() + # Input file + input::String = parsed_args["input"] + # Jet transport order + varorder::Int = parsed_args["varorder"] + # Number of points + N::Int = parsed_args["N"] + # Maximum iterations per points + maxiter::Int = parsed_args["maxiter"] + # Print header + println("`NEOS.adam` evaluation over the admissible region boundary") + println("• Detected ", nworkers(), " worker(s) with ", Threads.nthreads(), + " thread(s) each") + println("• Input file: ", input) + println("• Jet transport order: ", varorder) + println("• Number of points: ", N) + println("• Maximum iterations per point: ", maxiter) + + # Read optical astrometry + radec = read_radec_mpc(input) + # Orbit determination parameters + params = NEOParameters(coeffstol = Inf, bwdoffset = 0.007, fwdoffset = 0.007, + adamiter = maxiter) + # Reduce tracklet + tracklet = reduce_tracklets(radec)[1] + # Admissible region + A = AdmissibleRegion(tracklet, params) + # Set jet transport variables + set_variables(Float64, "dx"; order = varorder, numvars = 6) + + # Generate N points over the external boundary of A + points = map(t -> arboundary(A, t, :outer, :log), LinRange(0, 3, N)) + # Distribute points over workers + Np = round(Int, length(points) / nworkers()) + idxs = Iterators.partition(eachindex(points), Np) + points_per_worker = [points[i] for i in idxs] + # Evaluate `NEOs.adam` in each point + result = pmap(points_per_worker) do points + aes = Vector{Matrix{Float64}}(undef, length(points)) + Qs = Vector{Vector{Float64}}(undef, length(points)) + for i in eachindex(points) + x, v_ρ = points[i] + aes[i], Qs[i] = adam(radec, A, 10^x, v_ρ, params; scale = :log, + adamorder = varorder) + j = findlast(!isinf, Qs[i]) + if isnothing(j) + aes[i] = Matrix{Float64}(undef, 0, 0) + Qs[i] = Vector{Float64}(undef, 0) + else + aes[i] = aes[i][:, 1:j] + Qs[i] = Qs[i][1:j] + end + end + filter!(!isempty, aes) + filter!(!isempty, Qs) + return aes, Qs + end + # Separate attributable elements from Qs + aes = reduce(vcat, first.(result)) + Qs = reduce(vcat, last.(result)) + + # Save results + output = string(radec[1].tmpdesig, "ADAM.jld2") + jldsave(output; aes, Qs) + println("• Output saved to: ", output) + # Final time + final_time = now() + println("• Run started ", init_time, " and finished ", final_time) + + return nothing +end + +main() diff --git a/src/orbitdetermination/admissibleregion.jl b/src/orbitdetermination/admissibleregion.jl index a77eca1c..9746baa8 100644 --- a/src/orbitdetermination/admissibleregion.jl +++ b/src/orbitdetermination/admissibleregion.jl @@ -468,63 +468,95 @@ function _geomaxrange(coeffs::Vector{T}) where {T <: Real} end @doc raw""" - arboundary(A::AdmissibleRegion{T}, t::S, [boundary::Symbol]) where {T <: Real, S <: Number} - -Parametrization of `A`'s boundary. `boundary` chooses -between -- `:outer` (default) with `t ∈ [0, 3]`, or -- `:inner` with `t ∈ [0, 2]`. + arboundary(A::AdmissibleRegion{T}, t::S, [boundary::Symbol, + ρscale::Symbol]) where {T <: Real, S <: Number} + +Parametrization of `A`'s +- `:outer` boundary (default) with `t ∈ [0, 3]`, or +- `:inner` boundary with `t ∈ [0, 2]`. +`ρscale` sets the horizontal axis scale to `:linear` (default) +or `:log`. """ -function arboundary(A::AdmissibleRegion{T}, t::S, - boundary::Symbol = :outer) where {T <: Real, S <: Number} +function arboundary(A::AdmissibleRegion{T}, t::S, boundary::Symbol = :outer, + ρscale = :linear) where {T <: Real, S <: Number} if boundary == :outer - return _arhelboundary(A, t) + return _arhelboundary(A, t, ρscale) elseif boundary == :inner - return _argeoboundary(A, t) + return _argeoboundary(A, t, ρscale) else throw(ArgumentError("Argument `boundary` must be either `:outer` or `:inner`")) end end -function _arhelboundary(A::AdmissibleRegion{T}, t::S) where {T <: Real, S <: Number} +function _arhelboundary(A::AdmissibleRegion{T}, t::S, + ρscale::Symbol = :linear) where {T <: Real, S <: Number} # Parametrization domain @assert 0.0 <= t <= 3.0 # Lower (upper) bounds - x_min, x_max = A.ρ_domain + if ρscale == :linear + x_min, x_max = A.ρ_domain + elseif ρscale == :log + x_min, x_max = log10.(A.ρ_domain) + else + throw(ArgumentError("Argument `ρscale` must be either `:linear` or `:log`")) + end y_min, y_max = A.v_ρ_domain # ρ = x_min - if 0.0 <= t <= 1.0 + if 0.0 <= t < 1.0 return [x_min, y_min + t * (y_max - y_min)] else # Upper curve - if 1.0 <= t <= 2.0 - ρ = x_min + (t-1)*(x_max - x_min) - v_ρ = rangerates(A, ρ, :outer)[end] + if 1.0 <= t < 2.0 + x = x_min + (t-1)*(x_max - x_min) + if ρscale == :linear + v_ρ = rangerates(A, x, :outer)[end] + else + v_ρ = rangerates(A, 10^x, :outer)[end] + end # Lower curve elseif 2.0 <= t <= 3.0 - ρ = x_max - (t-2)*(x_max - x_min) - v_ρ = rangerates(A, ρ, :outer)[1] + x = x_max - (t-2)*(x_max - x_min) + if ρscale == :linear + v_ρ = rangerates(A, x, :outer)[1] + else + v_ρ = rangerates(A, 10^x, :outer)[1] + end end - return [ρ, v_ρ] + return [x, v_ρ] end end -function _argeoboundary(A::AdmissibleRegion{T}, t::S) where {T <: Real, S <: Number} +function _argeoboundary(A::AdmissibleRegion{T}, t::S, + ρscale::Symbol = :linear) where {T <: Real, S <: Number} # Parametrization domain @assert 0.0 <= t <= 2.0 # Lower (upper) bounds - x_min, x_max = A.ρ_domain[1], _geomaxrange(A.coeffs) + if ρscale == :linear + x_min, x_max = A.ρ_domain[1], _geomaxrange(A.coeffs) + elseif ρscale == :log + x_min, x_max = log10(A.ρ_domain[1]), log10(_geomaxrange(A.coeffs)) + else + throw(ArgumentError("Argument `ρscale` must be either `:linear` or `:log`")) + end # Upper curve - if 0.0 <= t <= 1.0 - ρ = x_min + t*(x_max - x_min) - v_ρ = rangerates(A, ρ, :inner)[end] + if 0.0 <= t < 1.0 + x = x_min + t*(x_max - x_min) + if ρscale == :linear + v_ρ = rangerates(A, x, :inner)[end] + else + v_ρ = rangerates(A, 10^x, :inner)[end] + end # Lower curve elseif 1.0 <= t <= 2.0 - ρ = x_max - (t-1)*(x_max - x_min) - v_ρ = rangerates(A, ρ, :inner)[1] + x = x_max - (t-1)*(x_max - x_min) + if ρscale == :linear + v_ρ = rangerates(A, x, :inner)[1] + else + v_ρ = rangerates(A, 10^x, :inner)[1] + end end - return [ρ, v_ρ] + return [x, v_ρ] end @doc raw"""