This repository has been archived by the owner on Jan 24, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 63
/
Copy pathmemory_util.h
452 lines (398 loc) · 11.6 KB
/
memory_util.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
// Copyright (c) 2017 Baidu Inc. All Rights Reserved.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <cstring>
#include <glog/logging.h>
#include <string>
#include <type_traits>
#include <vector>
namespace simulator {
namespace util {
typedef unsigned char uchar;
/**
* A simple archive interface that can perform serialization/deserialization on
* basic c++ primitive types, string and vector.
*/
class BinaryBuffer {
public:
//// Constructors
/**
* Create buffer by specifying size and capacity. BinaryBuffer owns the
* buffer.
*/
explicit BinaryBuffer(size_t size = 0, size_t capacity = 0);
/**
* Create buffer with an initial array by making a copy of it. BinaryBuffer
* owns the buffer.
*
* @param[in] data the initial array
* @param[in] num_bytes number of bytes to copy
*/
explicit BinaryBuffer(const void* data, size_t num_bytes);
/**
* Copy constructor. BinaryBuffer owns the buffer.
*/
explicit BinaryBuffer(const BinaryBuffer&);
/**
* Release the buffer if BinaryBuffer owns it.
*/
~BinaryBuffer();
//// copy
/**
* Overload the assignment operation. The capacity will increase if
* necessary, and in that case, BinaryBuffer owns the underlying data.
*/
BinaryBuffer& operator=(const BinaryBuffer&);
/**
* Set buffer by copying specified number of bytes from an array.
*
* @param[in] data array to copy from
* @param[in] num_bytes number of bytes to copy
*/
void assign(const void* data, size_t num_bytes);
/**
* Release the previous owned buffer, and take over the ownership of the
* data and use it as new buffer. After calling this function, it is
* BinaryBuffer's responsibility to manage the data.
*
* @param[in] data data to take over
* @param[in] size the size (in bytes) of the data
*/
void take_over(void* data, size_t size);
//// write/encode into buffer
/**
* Copy buffer from another BinaryBuffer to the end of buffer.
*/
void append(const BinaryBuffer&);
/**
* Append data of type T to the end of buffer.
*/
template <typename T>
void append(const T t);
/**
* Append string to the end of buffer.
*/
void append(const std::string& str);
/**
* Append vector to the end of buffer.
*/
template <typename T>
void append(const std::vector<T>& vec);
/**
* Append an array of specified number of elements to the end of buffer.
* The total number of bytes added to buffer is:
* num_elements * sizeof(T)
*
* @param[in] data array to append
* @param[in] num_elements number of elements to append
*/
template <typename T>
void append(const T* data, int num_elements);
/**
* Insert data of type T to a specific location in buffer.
*
* @param[in] p insert location (in terms of bytes)
* @param[in] t data to insert
*/
template <typename T>
inline void insert(size_t p, const T t);
/**
* Insert an array of specified number of elements to a specific location in
* buffer.
*
* @param[in] p insert location (in terms of bytes)
* @param[in] data array to insert
* @param[in] num_elements number of elements to insert
*/
template <typename T>
inline void insert(size_t p, const T* data, int num_elements);
//// read/decode from buffer
/**
* Move the read pointer to the beginning of buffer.
*/
void rewind();
/**
* Get the offset of read pointer.
*/
size_t offset() const;
/**
* Return true if read pointer reaches the end of buffer.
*/
bool eof() const;
/**
* Get a value of data type T from buffer.
*
* @param[out] t the variable to store the value.
*/
template<typename T>
void read(T& t);
/**
* Get a string from buffer.
*
* @param[out] str the variable to store the string
*/
void read(std::string& str);
/**
* Get a vector of type T from buffer.
*
* @param[out] vec the vector to store the data of type T
*/
template <typename T>
void read(std::vector<T>& vec);
/**
* Get specified number of data of type T from buffer.
*
* @param[out] t the vector to store the data of type T
* @param[in] num_elements number of data to read
*/
template<typename T>
void read(T* t, int num_elements);
//// capacity
/**
* Get the size (in terms of bytes) of buffer.
*/
size_t size() const;
/**
* Resize the buffer. If the new size is larger than current capacity,
* the function causes the buffer to reallocate its storage increasing its
* capacity to at least the new size.
*/
bool resize(size_t);
/**
* Get the capacity of buffer.
*/
size_t capacity() const;
/**
* Request that the buffer be at least enough to contain a specified number
* of bytes.
*/
bool reserve(size_t);
/**
* Clear the buffer by setting size to zero. The data will not be removed.
*/
void clear();
/**
* Return true if buffer is empty.
*/
bool empty() const;
//// buffer access
/**
* Return the pointer to buffer.
*/
uchar* data_mutable();
/**
* Return the const pointer to buffer.
*/
const uchar* data() const;
private:
/**
* Release the buffer if owns it
*/
void delete_if_own() {
if (own_) {
delete [] data_;
}
}
uchar* data_; // the underlying buffer
size_t size_; // number of bytes in buffer
size_t capacity_; // buffer capacity
bool own_; // whether this object owns its buffer
uchar* read_ptr_; // read pointer. A new read operation starts from
// this pointer.
};
inline BinaryBuffer::~BinaryBuffer() {
delete_if_own();
}
inline BinaryBuffer::BinaryBuffer(size_t size, size_t capacity) {
// make sure the size is no larger than the capacity
if (size > capacity) {
size = capacity;
}
data_ = (capacity != 0 ? new uchar[capacity] : NULL);
size_ = size;
capacity_ = capacity;
own_ = true;
}
inline BinaryBuffer::BinaryBuffer(const void* data, size_t num_bytes) {
if (num_bytes != 0) {
data_ = new uchar[num_bytes];
std::memcpy(data_, data, num_bytes);
} else {
data_ = NULL;
}
size_ = capacity_ = num_bytes;
own_ = true;
}
inline BinaryBuffer::BinaryBuffer(const BinaryBuffer& other) {
if (other.capacity_) {
data_ = new uchar[other.capacity_];
if (other.size_) {
std::memcpy(data_, other.data_, other.size_);
}
} else {
data_ = NULL;
}
size_ = other.size_;
capacity_ = other.capacity_;
own_ = true;
}
inline BinaryBuffer& BinaryBuffer::operator=(const BinaryBuffer& other) {
if (&other != this) {
if (other.size_ > capacity_) {
delete_if_own();
data_ = new uchar[other.capacity_];
capacity_ = other.capacity_;
// we re-allocate the buffer, so we owns the buffer.
own_ = true;
}
std::memcpy(data_, other.data_, other.size_);
size_ = other.size_;
}
return *this;
}
inline void BinaryBuffer::assign(const void* data, size_t num_bytes) {
if (num_bytes > capacity_) {
delete_if_own();
data_ = new uchar[num_bytes];
capacity_ = num_bytes;
// we re-allocate the buffer, so we owns the buffer.
own_ = true;
}
std::memcpy(data_, data, num_bytes);
size_ = num_bytes;
}
inline void BinaryBuffer::take_over(void* data, size_t size) {
delete_if_own();
data_ = static_cast<uchar*>(data);
size_ = capacity_ = size;
own_ = true;
}
inline void BinaryBuffer::append(const BinaryBuffer& other) {
append(other.data_, other.size_);
}
template <typename T>
inline void BinaryBuffer::append(const T t) {
append(&t, 1);
}
inline void BinaryBuffer::append(const std::string& str) {
append((size_t)str.length());
append(str.c_str(), str.length()+1);
}
template <typename T>
inline void BinaryBuffer::append(const std::vector<T>& vec) {
append((size_t)vec.size());
append(vec.data(), vec.size());
}
template <typename T>
inline void BinaryBuffer::append(const T* data, int num_elements) {
if (num_elements == 0) {
return;
}
size_t total_size = sizeof(T) * num_elements;
reserve(total_size + size_);
std::memcpy(data_ + size_, (uchar*)data, total_size);
size_ += + total_size;
}
template <typename T>
inline void BinaryBuffer::insert(size_t p, const T t) {
insert(p, &t, 1);
}
template <typename T>
inline void BinaryBuffer::insert(size_t p, const T* data, int num_elements) {
if (num_elements == 0) {
return;
}
size_t total_size = sizeof(T) * num_elements;
reserve(size_ + total_size);
std::memmove(data_ + p + total_size, data_ + p, size_ - p);
std::memcpy(data_ + p, (uchar*)data, total_size);
size_ += + total_size;
}
inline void BinaryBuffer::rewind() {
read_ptr_ = data_;
}
template <typename T>
inline void BinaryBuffer::read(T& t) {
read(&t, 1);
}
inline void BinaryBuffer::read(std::string& str) {
size_t len;
read(len);
char tmp[len+1];
read(tmp, len+1);
str.assign(tmp);
}
template <typename T>
inline void BinaryBuffer::read(std::vector<T>& vec) {
size_t size;
read(size);
vec.resize(size);
read(vec.data(), size);
}
template <typename T>
inline void BinaryBuffer::read(T* t, int num_elements) {
if (num_elements == 0) {
return;
}
size_t total_size = sizeof(T) * num_elements;
CHECK_LE(read_ptr_ - data_ + total_size, size_);
std::memcpy(t, read_ptr_, total_size);
read_ptr_ += total_size;
}
inline size_t BinaryBuffer::size() const {
return size_;
}
inline bool BinaryBuffer::resize(size_t size) {
bool capacity_changed = reserve(size);
size_ = size;
return capacity_changed;
}
inline size_t BinaryBuffer::capacity() const {
return capacity_;
}
inline bool BinaryBuffer::reserve(size_t capacity) {
if (capacity <= capacity_) {
return false;
}
if (capacity_ == 0) {
capacity_ = capacity;
}
// enlarge the capacity by a factor of 2 until enough
while (capacity_ < capacity) {
capacity_ = capacity_ << 1;
}
uchar* d = new uchar[capacity_];
std::memcpy(d, data_, size_);
delete_if_own();
data_ = d;
own_ = true;
return true;
}
inline bool BinaryBuffer::empty() const {
return size_;
}
inline bool BinaryBuffer::eof() const {
return offset() == size_;
}
inline void BinaryBuffer::clear() {
read_ptr_ = data_;
size_ = 0;
}
inline size_t BinaryBuffer::offset() const {
return size_t(read_ptr_ - data_);
}
inline uchar* BinaryBuffer::data_mutable() {
return data_;
}
inline const uchar* BinaryBuffer::data() const {
return data_;
}
}} // simulator::util