-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdemo.py
304 lines (244 loc) · 10.5 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import argparse
import sys
from functools import partial
import numpy as np
import torch
import einops
from torchvision.transforms import ToTensor, ToPILImage, Compose, Lambda, InterpolationMode, Resize
from pytorch_lightning import seed_everything
from omegaconf import OmegaConf
from PIL import Image
import gradio as gr
import fire
from sgm.util import instantiate_from_config
from sgm.models.nvsadapter import NVSAdapterDiffusionEngine
from sgm.geometry import make_view_matrix, make_intrinsic_matrix, get_rays
from sgm.data.single_image import decode_image
sys.path.append("thirdparty/carvekit")
from carvekit.api.high import HiInterface
_GPU_INDEX = 0
_CHECKPOINT = "checkpoints/demo.ckpt"
_TITLE = "NVS-Adapter: Plug-and-play Novel View Synthesis from a Single Image"
_DESCRIPTION = '''
This demo allows you to test our model with an arbitrary input image. You can set arbitrary azimuth and elevation for each view. Check out our [project webpage](https://postech-cvlab.github.io/nvsadapter/) and [paper](https://arxiv.org/abs/2312.07315)
'''
_ARTICLE = 'See uses.md'
def create_carvekit_interface():
interface = HiInterface(
object_type="object",
batch_size_seg=5,
batch_size_matting=1,
device='cuda' if torch.cuda.is_available() else 'cpu',
seg_mask_size=640,
matting_mask_size=2048,
trimap_prob_threshold=231,
trimap_dilation=30,
trimap_erosion_iters=5,
fp16=False
)
return interface
def decode_image(image: Image, color = [255, 255, 255, 255]):
image = np.array(image, dtype=np.float32)
if image.shape[-1] == 4:
image[image[:, :, -1] == 0.0] = color
return Image.fromarray(np.uint8(image[:, :, :3]))
def load_and_preprocess(carvekit_model, image: Image, use_carvekit=True):
if use_carvekit:
image = image.convert('RGB')
image_wo_bkgd = np.array(carvekit_model([image])[0])
est_seg = image_wo_bkgd > 127
image = np.array(image)
foreground = est_seg[:, : , -1].astype(np.bool_)
image[~foreground] = [255., 255., 255.]
image = Image.fromarray(np.array(image))
else:
image = decode_image(image)
image_transform = Compose([
ToTensor(),
Resize(
(256, 256),
interpolation=InterpolationMode.BICUBIC,
antialias=True
),
Lambda(lambda x: x * 2.0 - 1.0),
])
return image_transform(image).clamp(-1, 1)
def prepare_batch(intrinsic, poses, input_tensor, model):
support_rgbs = einops.rearrange(input_tensor, "(b n c) h w -> b n c h w", b=1, n=1)
support_c2w = make_view_matrix(np.deg2rad(0), np.deg2rad(0), 1.5)
support_intrinsics = einops.rearrange(intrinsic, "(b n i) j -> b n i j", b=1, n=1)
support_c2ws = einops.rearrange(support_c2w, "(b n i) j -> b n i j", b=1, n=1)
support_c2ws[..., :3, :3] *= -1
query_intrinsics = einops.repeat(support_intrinsics, "b n i j -> b (n repeat) i j", repeat=4)
query_c2ws = einops.rearrange(poses, "(b n) i j -> b n i j", b=1)
query_c2ws[..., :3, :3] *= -1
inverse_support_c2ws = torch.inverse(support_c2ws)
support_c2ws = inverse_support_c2ws @ support_c2ws
query_c2ws = inverse_support_c2ws @ query_c2ws
support_latents = model.encode_first_stage(support_rgbs)
h_latents, w_latents = support_latents.shape[-2:]
h_rgbs, w_rgbs = support_rgbs.shape[-2:]
assert h_rgbs / h_latents == w_rgbs / w_latents, "The ratio of height and width should be the same."
stride = int(h_rgbs / h_latents)
support_rays_offset, support_rays_direction = get_rays(
intrinsics=support_intrinsics,
c2ws=support_c2ws,
image_size=(h_rgbs, w_rgbs),
stride=stride,
)
query_rays_offset, query_rays_direction = get_rays(
intrinsics=query_intrinsics,
c2ws=query_c2ws,
image_size=(h_rgbs, w_rgbs),
stride=stride,
)
batch = {
"support_latents": support_latents,
"support_rgbs": support_rgbs.flatten(0, 1),
"support_rgbs_cond": support_rgbs,
"txt": [""],
"support_rays_offset": support_rays_offset,
"support_rays_direction": support_rays_direction,
"query_rays_offset": query_rays_offset,
"query_rays_direction": query_rays_direction,
}
return batch
def main_run(
model,
device,
input_image,
cfg_scale,
num_steps,
seed,
rm_bkgd,
azimuth_1,
azimuth_2,
azimuth_3,
azimuth_4,
elevation_1,
elevation_2,
elevation_3,
elevation_4,
):
seed_everything(seed)
if input_image is None:
return None, None, None, None, None
model.sampler.num_steps = num_steps
model.sampler.guider.scale_schedule = lambda sigma: cfg_scale
if rm_bkgd:
carvekit_model = create_carvekit_interface()
else:
carvekit_model = None
rm_bkgd_img = load_and_preprocess(carvekit_model, input_image, rm_bkgd)
input_tensor = rm_bkgd_img.to(device)
pose1 = make_view_matrix(np.deg2rad(azimuth_1), np.deg2rad(elevation_1), 1.5)
pose2 = make_view_matrix(np.deg2rad(azimuth_2), np.deg2rad(elevation_2), 1.5)
pose3 = make_view_matrix(np.deg2rad(azimuth_3), np.deg2rad(elevation_3), 1.5)
pose4 = make_view_matrix(np.deg2rad(azimuth_4), np.deg2rad(elevation_4), 1.5)
poses = torch.stack([pose1, pose2, pose3, pose4])
intrinsic = make_intrinsic_matrix(np.deg2rad(49.1), 256, 256)
batch = prepare_batch(intrinsic, poses, input_tensor, model)
pred_images = model.novel_view_sample(batch, 4)
rm_bkgd_img = (rm_bkgd_img + 1) / 2.
to_pil = ToPILImage()
out_image1 = to_pil(pred_images[0, 0].clamp(0, 1))
out_image2 = to_pil(pred_images[0, 1].clamp(0, 1))
out_image3 = to_pil(pred_images[0, 2].clamp(0, 1))
out_image4 = to_pil(pred_images[0, 3].clamp(0, 1))
out_rm_bkgd_img = to_pil(rm_bkgd_img)
return out_rm_bkgd_img, out_image1, out_image2, out_image3, out_image4
def run_demo(
device,
config,
ckpt_path,
server_name,
server_port,
):
demo = gr.Blocks(title=_TITLE)
device = device if torch.cuda.is_available() else "cpu"
with open(config) as fp:
config = OmegaConf.load(fp)
model_config = config.model
model_config.params.use_ema = True
model_config.params.sd_ckpt_path = None
model_config.params.ckpt_path = ckpt_path
model: NVSAdapterDiffusionEngine = instantiate_from_config(model_config)
model.eval().to(device)
with demo:
gr.Markdown('# ' + _TITLE)
gr.Markdown(_DESCRIPTION)
with gr.Row():
with gr.Column(variant='panel'):
image_block = gr.Image(type='pil', image_mode='RGBA', label='Input image of single object', value="sample/kunkun.png")
with gr.Accordion('Advanced options', open=False):
scale_slider = gr.Slider(0, 30, value=11, step=1, label='Diffusion guidance scale')
steps_slider = gr.Slider(5, 200, value=50, step=5, label='Number of diffusion inference steps')
seed_slider = gr.Number(value=777, label="Seed")
rm_bkgd = gr.Checkbox(True, label="Use carvekit to remove background.")
run_btn = gr.Button('Run Generation', variant='primary')
bkgd_rm_output = gr.Image(label="Background removed image", type="pil")
with gr.Row(variant='panel'):
with gr.Column(variant="panel"):
with gr.Column(variant="panel"):
gen_output_1 = gr.Image(label="view1", type="pil")
with gr.Accordion():
azimuth_1 = gr.Slider(0, 360, value=72, step=5, label="Azimuth")
elevation_1 = gr.Slider(-90, 90, value=0, step=5, label="Elevation")
with gr.Column(variant="panel"):
gen_output_2 = gr.Image(label="view2", type="pil")
with gr.Accordion():
azimuth_2 = gr.Slider(0, 360, value=216, step=5, label="Azimuth")
elevation_2 = gr.Slider(-90, 90, value=0, step=5, label="Elevation")
with gr.Column(variant="panel"):
with gr.Column(variant="panel"):
gen_output_3 = gr.Image(label="view3", type="pil")
with gr.Accordion():
azimuth_3 = gr.Slider(0, 360, value=144, step=5, label="Azimuth")
elevation_3 = gr.Slider(-90, 90, value=0, step=5, label="Elevation")
with gr.Column(variant="panel"):
gen_output_4 = gr.Image(label="view4", type="pil")
with gr.Accordion():
azimuth_4 = gr.Slider(0, 360, value=288, step=5, label="Azimuth")
elevation_4 = gr.Slider(-90, 90, value=0, step=5, label="Elevation")
run_btn.click(
fn=partial(main_run, model, device),
inputs=[
image_block,
scale_slider,
steps_slider,
seed_slider,
rm_bkgd,
azimuth_1,
azimuth_2,
azimuth_3,
azimuth_4,
elevation_1,
elevation_2,
elevation_3,
elevation_4
],
outputs=[bkgd_rm_output, gen_output_1, gen_output_2, gen_output_3, gen_output_4]
)
demo.launch(server_name=server_name, server_port=server_port, share=True)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--device", type=int, help="GPU index")
parser.add_argument("--config", type=str, default="configs/base.yaml")
parser.add_argument("--ckpt_path", type=str, help="path to checkpoint")
parser.add_argument("--server_name", type=str, default="127.0.0.1", help="Server host name")
parser.add_argument("--server_port", type=int, default=7860, help="Server port")
args = parser.parse_args()
if args.device is None:
args.device = _GPU_INDEX
if args.ckpt_path is None:
args.ckpt_path = _CHECKPOINT
print('\n'.join(f'{k}={v}' for k, v in vars(args).items()))
demo_run_fn = partial(
run_demo,
device=args.device,
config=args.config,
ckpt_path=args.ckpt_path,
server_name=args.server_name,
server_port=args.server_port,
)
fire.Fire(demo_run_fn)