forked from kelvins/algorithms-and-data-structures
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmaze_solving.py
213 lines (170 loc) · 6.26 KB
/
maze_solving.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
"""
Busca em largura e em profundidade em um labirinto com o objetivo
de encontrar um caminho do ponto "start" ao ponto "goal"
Referencia: Problemas Classicos de Ciencia da Computacao com Python
"""
import random
from collections import deque, namedtuple
from enum import Enum
class Cell(Enum):
EMPTY = " "
BLOCKED = "X"
START = "S"
GOAL = "G"
PATH = "*"
MazeLocation = namedtuple("MazeLocation", ["row", "col"])
class Maze:
def __init__(
self,
rows=10,
cols=10,
sparseness=0.2,
start=MazeLocation(0, 0),
goal=MazeLocation(9, 9),
):
self._rows = rows
self._cols = cols
self.start = start
self.goal = goal
self._grid = [[Cell.EMPTY for _ in range(cols)] for _ in range(rows)]
self._randomly_fill(rows, cols, sparseness)
self._grid[start.row][start.col] = Cell.START
self._grid[goal.row][goal.col] = Cell.GOAL
def _randomly_fill(self, rows, cols, sparseness):
"""Preenche o labirinto de forma randomica."""
for row in range(rows):
for col in range(cols):
if random.uniform(0, 1.0) < sparseness:
self._grid[row][col] = Cell.BLOCKED
def __str__(self):
return "\n".join(["|".join([c.value for c in r]) for r in self._grid])
def goal_test(self, maze_location):
return maze_location == self.goal
def successors(self, ml):
"""Calcula as possiveis localizacoes onde eh possivel se mover."""
locations = list()
if ml.row + 1 < self._rows and self._grid[ml.row + 1][ml.col] != Cell.BLOCKED:
locations.append(MazeLocation(ml.row + 1, ml.col))
if ml.row - 1 >= 0 and self._grid[ml.row - 1][ml.col] != Cell.BLOCKED:
locations.append(MazeLocation(ml.row - 1, ml.col))
if ml.col + 1 < self._cols and self._grid[ml.row][ml.col + 1] != Cell.BLOCKED:
locations.append(MazeLocation(ml.row, ml.col + 1))
if ml.col - 1 >= 0 and self._grid[ml.row][ml.col - 1] != Cell.BLOCKED:
locations.append(MazeLocation(ml.row, ml.col - 1))
return locations
def mark(self, path):
"""Marca o caminho andado no labirinto."""
for maze_location in path:
self._grid[maze_location.row][maze_location.col] = Cell.PATH
self._grid[self.start.row][self.start.col] = Cell.START
self._grid[self.goal.row][self.goal.col] = Cell.GOAL
def clear(self, path):
"""Limpa o caminho marcado no labirinto."""
for maze_location in path:
self._grid[maze_location.row][maze_location.col] = Cell.EMPTY
self._grid[self.start.row][self.start.col] = Cell.START
self._grid[self.goal.row][self.goal.col] = Cell.GOAL
class Stack:
def __init__(self):
self._data = list()
@property
def empty(self):
return not self._data
def push(self, value):
self._data.append(value)
def pop(self):
return self._data.pop()
def __repr__(self):
return repr(self._data)
class Queue:
def __init__(self):
self._data = deque()
@property
def empty(self):
return not self._data
def push(self, value):
self._data.append(value)
def pop(self):
return self._data.popleft()
def __repr__(self):
return repr(self._data)
class Node:
def __init__(self, state, parent):
self.state = state
self.parent = parent
def dfs(initial, goal_test, successors):
"""Algoritmo de busca em profundidade."""
# frontier representa os lugares que ainda nao visitamos
frontier = Stack()
frontier.push(Node(initial, None))
# explored representa os lugares que ja foram visitados
explored = {initial}
# continua enquanto houver lugares para explorar
while not frontier.empty:
current_node = frontier.pop()
current_state = current_node.state
# se encontrar o objetivo retorna o no atual
if goal_test(current_state):
return current_node
# verifica para onde podemos ir em seguida
for child in successors(current_state):
# ignora os nos filhos que ja foram visitados
if child in explored:
continue
explored.add(child)
frontier.push(Node(child, current_node))
# passamos por todos os lugares e nao atingimos o objetivo
return None
def bfs(initial, goal_test, successors):
"""Algoritmo de busca em largura."""
# frontier representa os lugares que ainda nao visitamos
frontier = Queue()
frontier.push(Node(initial, None))
# explored representa os lugares que ja foram visitados
explored = {initial}
# continua enquanto houver lugares para explorar
while not frontier.empty:
current_node = frontier.pop()
current_state = current_node.state
# se encontrar o objetivo retorna o no atual
if goal_test(current_state):
return current_node
# verifica para onde podemos ir em seguida
for child in successors(current_state):
# ignora os nos filhos que ja foram visitados
if child in explored:
continue
explored.add(child)
frontier.push(Node(child, current_node))
# passamos por todos os lugares e nao atingimos o objetivo
return None
def node_to_path(node):
"""Retorna o caminho encontrado pelo algoritmo."""
path = [node.state]
while node.parent:
node = node.parent
path.append(node.state)
path.reverse()
return path
if __name__ == "__main__":
maze = Maze()
# Solucao utilizando busca em profundidade
solution = dfs(maze.start, maze.goal_test, maze.successors)
if solution is None:
print("No solution found using depth-first search")
else:
path = node_to_path(solution)
maze.mark(path)
print("Solution using DFS:")
print(maze)
maze.clear(path)
# Solucao utilizando busca em largura
solution = bfs(maze.start, maze.goal_test, maze.successors)
if solution is None:
print("No solution found using breath-first search")
else:
path = node_to_path(solution)
maze.mark(path)
print("Solution using BFS:")
print(maze)
maze.clear(path)