-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsample.py
236 lines (206 loc) · 8.67 KB
/
sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
"""
Sample new images from a pre-trained DiT.
"""
import argparse
import logging
import os
import re
from datetime import datetime
import matplotlib.pyplot as plt
import torch
import tqdm
from matplotlib import animation
from data_loading import beatmap_to_sequence
from data_loading import feature_size
from data_loading import get_beatmap_idx
from data_loading import split_and_process_sequence
from diffusion import create_diffusion
from export.create_beatmap import create_beatmap
from export.create_beatmap import plot_beatmap
from models import DiT_models
from slider import Beatmap
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
CLEAN_FILENAME_RX = re.compile(r"[/\\?%*:|\"<>\x7F\x00-\x1F]")
def find_model(ckpt_path):
assert os.path.isfile(ckpt_path), f"Could not find DiT checkpoint at {ckpt_path}"
checkpoint = torch.load(ckpt_path, map_location=lambda storage, loc: storage)
if "ema" in checkpoint: # supports checkpoints from train.py
checkpoint = checkpoint["ema"]
return checkpoint
def main(args):
# Setup PyTorch:
torch.manual_seed(args.seed)
torch.set_grad_enabled(False)
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load beatmap to sample coordinates for
beatmap = Beatmap.from_path(args.beatmap)
filename = f"{beatmap.beatmap_id} {beatmap.artist} - {beatmap.title}"
filename = CLEAN_FILENAME_RX.sub("-", filename)
result_dir = os.path.join(
"results",
filename,
)
os.makedirs(result_dir, exist_ok=True)
seq_no_embed = beatmap_to_sequence(beatmap)
if args.plot_time is not None:
# noinspection PyTypeChecker
start_index = torch.nonzero(seq_no_embed[2] >= args.plot_time)[0]
seq_no_embed = seq_no_embed[:, start_index : start_index + args.seq_len]
print(f"Sequence trimmed to length {seq_no_embed.shape[1]}")
(seq_x, seq_o, seq_c), seq_len = split_and_process_sequence(seq_no_embed)
seq_o = seq_o - seq_o[0] # Normalize to relative time
print(f"seq len {seq_len}")
# Load model:
model = DiT_models[args.model](
num_classes=args.num_classes,
context_size=feature_size - 3 + 128,
).to(device)
state_dict = find_model(args.ckpt)
model.load_state_dict(state_dict)
model.eval() # important!
diffusion = create_diffusion(
str(args.num_sampling_steps),
noise_schedule="squaredcos_cap_v2",
)
# Create banded matrix attention mask for increased sequence length
attn_mask = torch.full((seq_len, seq_len), True, dtype=torch.bool, device=device)
for i in range(seq_len):
attn_mask[max(0, i - args.seq_len) : min(seq_len, i + args.seq_len), i] = False
# Labels to condition the model with (feel free to change):
if args.style_id is not None:
beatmap_idx = get_beatmap_idx(args.beatmap_idx)
idx = beatmap_idx[args.style_id]
class_labels = [idx + i for i in range(args.num_variants)]
else:
# Use null class
class_labels = [args.num_classes]
# Create sampling noise:
n = len(class_labels)
z = torch.randn(n, 2, seq_len, device=device)
o = seq_o.repeat(n, 1).to(device)
c = seq_c.repeat(n, 1, 1).to(device)
y = torch.tensor(class_labels, device=device)
# Setup classifier-free guidance:
z = torch.cat([z, z], 0)
o = torch.cat([o, o], 0)
c = torch.cat([c, c], 0)
y_null = torch.tensor([args.num_classes] * n, device=device)
y = torch.cat([y, y_null], 0)
model_kwargs = dict(o=o, c=c, y=y, cfg_scale=args.cfg_scale, attn_mask=attn_mask)
def to_seq(samples):
samples, _ = samples.chunk(2, dim=0) # Remove null class samples
return torch.concatenate([samples.cpu(), seq_no_embed[2:].repeat(n, 1, 1)], 1)
def save_sequence(sampled_seq, iteration_number=None):
# Save beatmaps:
for idx, seq in enumerate(sampled_seq):
try:
new_beatmap = create_beatmap(
seq,
beatmap,
f"Diffusion {args.style_id} {idx} {datetime.now()}" if iteration_number is None else
f"Diffusion {args.style_id} {idx} {datetime.now()} {iteration_number}",
)
new_beatmap.write_path(
os.path.join(
result_dir,
f"{beatmap.beatmap_id} result {args.style_id} {idx}.osu" if iteration_number is None else
f"{beatmap.beatmap_id} result {args.style_id} {idx} {iteration_number}.osu",
),
)
if args.plot_time is not None:
fig, ax = plt.subplots()
plot_beatmap(ax, new_beatmap, args.plot_time, args.plot_width)
ax.axis("equal")
ax.set_xlim([0, 512])
ax.set_ylim([384, 0])
plt.show()
except Exception as e:
logging.error(f"Failed to create beatmap.", exc_info=e)
# Sample images:
sampled_seq = None
if args.plot_time is not None and args.make_animation:
fig, ax = plt.subplots()
ax.axis("equal")
ax.set_xlim([0, 512])
ax.set_ylim([384, 0])
artists = []
for samples in diffusion.p_sample_loop_progressive(
model.forward_with_cfg,
z.shape,
z,
clip_denoised=True,
model_kwargs=model_kwargs,
progress=True,
device=device,
):
sampled_seq = to_seq(samples["sample"])
new_beatmap = create_beatmap(
sampled_seq[0],
beatmap,
f"Diffusion {args.style_id}",
)
artists.append(
plot_beatmap(ax, new_beatmap, args.plot_time, args.plot_width),
)
ani = animation.ArtistAnimation(fig=fig, artists=artists, interval=1000 // 24)
ani.save(filename=os.path.join(result_dir, "animation.gif"), writer="pillow")
save_sequence(sampled_seq)
else:
samples = diffusion.p_sample_loop(
model.forward_with_cfg,
z.shape,
z,
clip_denoised=True,
model_kwargs=model_kwargs,
progress=True,
device=device,
)
sampled_seq = to_seq(samples)
save_sequence(sampled_seq)
if args.refine_ckpt is not None:
# Refine result with refine model
state_dict = find_model(args.refine_ckpt)
model.load_state_dict(state_dict)
img = samples
for _ in tqdm.tqdm(range(args.refine_iters)):
t = torch.tensor([0] * img.shape[0], device=device)
with torch.no_grad():
out = diffusion.p_sample(
model.forward_with_cfg,
img,
t,
clip_denoised=True,
model_kwargs=model_kwargs,
)
img = out["sample"]
save_sequence(to_seq(img), args.refine_iters)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--beatmap", type=str, required=True)
parser.add_argument("--ckpt", type=str, required=True)
parser.add_argument(
"--model",
type=str,
choices=list(DiT_models.keys()),
default="DiT-B",
)
parser.add_argument("--num-classes", type=int, default=52670)
parser.add_argument("--beatmap-idx", type=str, default="beatmap_idx.pickle")
parser.add_argument("--cfg-scale", type=float, default=1.0)
parser.add_argument("--num-sampling-steps", type=int, default=250)
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--seq-len", type=int, default=128)
parser.add_argument("--use-amp", type=bool, default=True)
parser.add_argument("--style-id", type=int, default=None)
parser.add_argument("--plot-time", type=float, default=None)
parser.add_argument("--plot-width", type=float, default=2000)
parser.add_argument("--num-variants", type=int, default=1)
parser.add_argument("--make-animation", type=bool, default=False)
parser.add_argument("--refine-ckpt", type=str, default=None)
parser.add_argument("--refine-iters", type=int, default=10)
args = parser.parse_args()
# for style_id in [2592760, 1451282, 1995061, 3697057, 2799753, 1772923, 1907310]:
# args.style_id = style_id
# main(args)
main(args)