-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils.py
55 lines (46 loc) · 1.82 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import cv2
import numpy as np
from PIL import Image
import torch
def show_image(image, title="Image", wait_key=0):
"""
Show the image
"""
im = image
if isinstance(im, Image.Image):
# If PIL image, convert to openCV
im = cv2.cvtColor(np.array(im), cv2.COLOR_RGB2BGR)
cv2.imshow(title, im)
cv2.waitKey(wait_key)
cv2.destroyWindow(title)
def resize_and_pad(image, target_size, mask=None):
height, width = image.shape[:2]
aspect_ratio = width / height
if aspect_ratio > 1:
new_width = target_size[0]
new_height = int(new_width / aspect_ratio)
else:
new_height = target_size[1]
new_width = int(new_height * aspect_ratio)
# Resize image
resized_image = cv2.resize(image, (new_width, new_height), interpolation=cv2.INTER_LINEAR)
padded_image = np.full(target_size + (3,), 255, dtype=np.uint8) # Padding white color
x_offset = (target_size[0] - new_width) // 2
y_offset = (target_size[1] - new_height) // 2
padded_image[y_offset:y_offset+new_height, x_offset:x_offset+new_width] = resized_image
if mask is not None:
# Resize mask
resized_mask = cv2.resize(mask, (new_width, new_height), interpolation=cv2.INTER_NEAREST)
padded_mask = np.zeros(target_size, dtype=np.uint8) # Padding black color
padded_mask[y_offset:y_offset+new_height, x_offset:x_offset+new_width] = resized_mask
return padded_image, padded_mask, (x_offset, y_offset, new_width, new_height)
else:
return padded_image, None, (x_offset, y_offset, new_width, new_height)
def select_device():
if torch.cuda.device_count() > 0:
device = torch.device("cuda:0")
elif torch.backends.mps.is_available():
device = torch.device("mps")
else:
device = torch.device("cpu")
return device