-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathinfer.py
executable file
·203 lines (158 loc) · 7.02 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
#!python
import os
import cv2
import numpy as np
import torch
from unet import UNet
from dataset import LineDataset
from torchvision.transforms import ToTensor
from utils import show_image, resize_and_pad, select_device
import argparse
torch.backends.mps.enabled = True
np.set_printoptions(threshold=np.inf)
def postprocess(pred_mask, orig_image, output_dir, output_filename):
# Remove noise
kernel = np.ones((3, 3), np.uint8)
mask = cv2.morphologyEx(pred_mask, cv2.MORPH_CLOSE, kernel)
mask = (mask > 0).astype(np.uint8)
# Empty mask for Drawing lines
line_mask = np.zeros_like(mask)
# Use Hough transform to detect lines
lines = cv2.HoughLinesP(mask, 1, np.pi/180, threshold=16, minLineLength=4, maxLineGap=8)
# Store the endpoint coordinates
line_endpoints = []
# Draw lines
if lines is not None:
for line in lines:
x1, y1, x2, y2 = line[0]
cv2.line(line_mask, (x1, y1), (x2, y2), 255, 2)
line_endpoints.append(((x1, y1), (x2, y2)))
print("line_endpoints: ", len(line_endpoints))
# Calculate intersections between lines
intersection_points = []
for i in range(len(line_endpoints)):
for j in range(i+1, len(line_endpoints)):
line1 = line_endpoints[i]
line2 = line_endpoints[j]
intersection_point = calculate_intersection(line1, line2)
if intersection_point is not None:
intersection_points.append(intersection_point)
print("intersection_points: ", len(intersection_points))
# Draw intersections onto mask
for point in intersection_points:
cv2.circle(line_mask, point, 4, 255, -1)
# Find all regions with dense intersections
if len(intersection_points) > 0:
density_threshold = 1
radius = 20
dense_centers = []
for center_point in intersection_points:
overlap_area = 0
for point in intersection_points:
# Distance between two points
distance = np.sqrt((point[0] - center_point[0])**2 + (point[1] - center_point[1])**2)
# print("distance <= radius: ", distance)
if distance <= radius:
overlap_area += 1
# print("overlap_area >= density_threshold: ", overlap_area)
if overlap_area >= density_threshold:
dense_centers.append(center_point)
print("dense_centers: ", len(dense_centers))
# Non-maximum suppression based on the density of points
nms_centers = []
while len(dense_centers) > 0:
# Select the first point
current_center = dense_centers[0]
nms_centers.append(current_center)
# Remove other points within the radius range
dense_centers = [p for p in dense_centers if np.sqrt((p[0] - current_center[0])**2 + (p[1] - current_center[1])**2) > radius]
print("nms_centers_count: ", len(nms_centers))
print("nms_centers: ", nms_centers)
# Draw the filtered points onto original image
for center in nms_centers:
cv2.circle(orig_image, center, 4, (0, 255, 0), -1)
# Merge image with mask
line_image = cv2.cvtColor(line_mask, cv2.COLOR_GRAY2BGR)
result_image = cv2.addWeighted(orig_image, 0.7, line_image, 0.3, 0)
# Save image
output_path = os.path.join(output_dir, f"intersections_{output_filename}")
cv2.imwrite(output_path, result_image)
def calculate_intersection(line1, line2):
# Extract the endpoint
(x1, y1), (x2, y2) = line1
(x3, y3), (x4, y4) = line2
denom = ((y4 - y3) * (x2 - x1) - (x4 - x3) * (y2 - y1))
if denom == 0:
return None # Parallel, no intersection
ua = ((x4 - x3) * (y1 - y3) - (y4 - y3) * (x1 - x3)) / denom
ub = ((x2 - x1) * (y1 - y3) - (y2 - y1) * (x1 - x3)) / denom
# Check if intersections is within the range of the line segments
if 0 <= ua <= 1 and 0 <= ub <= 1:
x = x1 + ua * (x2 - x1)
y = y1 + ua * (y2 - y1)
return int(x), int(y)
else:
return None # Outside the line segments
def inference(model_path, data_dir, output_dir, imgsz):
# Load pretrained model
device = select_device()
model = UNet(n_channels=3, n_classes=1)
model.load_state_dict(torch.load(model_path, map_location=device))
model.to(device)
model.eval()
# Create output dir
os.makedirs(output_dir, exist_ok=True)
# Create datasets
infer_dataset = LineDataset(data_dir, imgsz)
poi_conf = 0.8
# Start inference
with torch.no_grad():
for image, image_path in infer_dataset:
print("image: ", image.shape)
image = image.unsqueeze(0).to(device)
output = model(image)
print("output: ", output.shape)
pred_mask = output.squeeze().cpu().numpy()
print("Prediction min:", output.min())
print("Prediction max:", output.max())
# Convert to 0/1 code
pred_mask = np.where(pred_mask > poi_conf, pred_mask, 0.0)
# Load original image
orig_image = cv2.imread(image_path)
original_size = orig_image.shape[:2]
print("image_path: ", image_path)
# Unpadding around mask
_, _, (x_offset, y_offset, new_width, new_height) = resize_and_pad(orig_image, imgsz)
unpadded_mask = pred_mask[y_offset:y_offset+new_height, x_offset:x_offset+new_width]
# Restore mask to original size
restored_mask = cv2.resize(unpadded_mask, (original_size[1], original_size[0]), interpolation=cv2.INTER_NEAREST)
# Draw the predicted masks onto original image
mask_image = np.zeros_like(orig_image)
mask_image[restored_mask > 0] = (255, 0, 0)
overlay = cv2.addWeighted(orig_image, 0.7, mask_image, 0.3, 0)
output_filename = os.path.basename(image_path)
# Save mask image
mask_output_path = os.path.join(output_dir, f"mask_{output_filename}")
cv2.imwrite(mask_output_path, restored_mask * 255)
# Save result image
output_path = os.path.join(output_dir, f"result_{output_filename}")
cv2.imwrite(output_path, overlay)
postprocess(restored_mask, orig_image, output_dir, output_filename)
def parse_args():
parser = argparse.ArgumentParser(
description='infer with a pretrained model')
parser.add_argument('--model_path', help='model path', required=True)
parser.add_argument('--data_dir', default='./images/inputs', help='input images path')
parser.add_argument('--output_dir', default='./images/outputs', help='output images path')
parser.add_argument('--imgsz', default=512, help='image size', type=int)
args = parser.parse_args()
return args
def main():
args = parse_args()
model_path = args.model_path
data_dir = args.data_dir
output_dir = args.output_dir
imgsz = args.imgsz
inference(model_path, data_dir, output_dir, (imgsz, imgsz))
if __name__ == '__main__':
main()