-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsine_and_cos.py
46 lines (35 loc) · 1.76 KB
/
sine_and_cos.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import numpy as np
import utils
import datetime
import evolutionary_module
np.random.seed(99)
with utils.OutSplit('sin-50k'.format(d=datetime.datetime.now())):
population_count = int(input('population_count: '))
print(population_count)
population_size = int(input('poplation_size: '))
print(population_size)
node_cap = int(input('node_cap: '))
print(node_cap)
generations = int(input('generations: '))
print(generations)
target_accuracy = float(input('target_accuracy: '))
print('{}%'.format(target_accuracy*100))
r = float(input('random_number: '))
print(r)
x = (np.random.random(50000)*2*np.math.pi).reshape(50000, 1)
y = (np.sin(x)+1).reshape(50000, 1)
val_x = (np.random.random(1000)*2*np.math.pi).reshape(1000, 1)
val_y = (np.sin(val_x)+1).reshape(1000, 1)
network = evolutionary_module.evolve_node_count(x, y, val_x, val_y, utils.jit_near_compare, population_count, population_size, node_cap, generations, target_accuracy, r)
# with utils.OutSplit('cos-50k'.format(d= datetime.datetime.now())):
# print('population_count: ' + str(population_count))
# print('population_size: ' + str(population_size))
# print('node_cap: ' + str(node_cap))
# print('generations: ' + str(generations))
# print('target_accuracy: {}%'.format(target_accuracy*100))
# print('random_number: ' + str(r))
# x = (np.random.random(50000)*2*np.math.pi).reshape(50000, 1)
# y = (np.cos(x)+1).reshape(50000, 1)
# val_x = (np.random.random(1000)*2*np.math.pi).reshape(1000, 1)
# val_y = (np.cos(val_x)+1).reshape(1000, 1)
# network = evolutionary_module.evolve_node_count(x, y, val_x, val_y, utils.jit_near_compare, population_count, population_size, node_cap, generations, target_accuracy, r)