-
Notifications
You must be signed in to change notification settings - Fork 58
/
Copy pathutils.py
174 lines (147 loc) · 8.79 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import argparse
import os
import json
import random
import sample
import tensorflow as tf
import numpy as np
def get_files(root_dir, allowed_categories, blacklisted_categories, training_splits, splits_folder_name='splits', grasps_folder_name='grasps'):
split_files = os.listdir(os.path.join(root_dir, splits_folder_name))
files = []
for split_file in split_files:
if split_file.find('.json') < 0:
continue
should_go_through = False
if allowed_categories == '':
should_go_through = True
if blacklisted_categories != '':
if blacklisted_categories.find(split_file[:-5]) >= 0:
should_go_through = False
else:
if allowed_categories.find(split_file[:-5]) >= 0:
should_go_through = True
if should_go_through:
files += [os.path.join(root_dir, grasps_folder_name, f) for f in
json.load(open(os.path.join(root_dir, splits_folder_name, split_file)))[training_splits]]
return files
def set_seed(seed):
random.seed(seed)
tf.random.set_random_seed(seed)
np.random.seed(seed)
def load_object(path, scale):
object_model = sample.Object(path)
object_model.rescale(scale)
object_model = object_model.mesh
object_model.vertices -= np.mean(object_model.vertices, 0, keepdims=1)
return object_model
def mkdir(path):
if not os.path.isdir(path):
os.makedirs(path)
def make_parser():
parser = argparse.ArgumentParser(description='6 DOF GraspNet parser.',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--num_objects_per_batch', type=int, default=1, help='data batch size.')
parser.add_argument('--num_grasps_per_object', type=int, default=64)
parser.add_argument('--npoints', type=int, default=1024, help='number of points in each batch')
parser.add_argument('--occlusion_nclusters', type=int, default=0,
help='clusters the points to nclusters to be selected for simulating the dropout')
parser.add_argument('--occlusion_dropout_rate', type=float, default=0,
help='probability at which the clusters are removed from point cloud.')
parser.add_argument('--depth_noise', type=float, default=0.0) # to be used in the data reader.
parser.add_argument('--dataset_root_folder', type=str, default='unified_grasp_data/',
help='path to root directory of the dataset.')
parser.add_argument('--kl_loss_weight', type=float, default=0.01)
parser.add_argument('--lr', type=float, default=0.0001)
parser.add_argument('--num_grasp_clusters', type=int, default=32)
parser.add_argument('--gpu', type=str, default='0')
parser.add_argument('--solver', type=str, default='adam')
parser.add_argument('--logdir', type=str, default='')
parser.add_argument('--force_continue', type=int, default=0)
parser.add_argument('--training_splits', type=str, default='train',
help='can be any combination of train and test without any space.')
parser.add_argument('--is_training', type=int, default=1)
parser.add_argument('--gripper', type=str, default='panda',
help='type of the gripper. Leave it to panda if you want to use it for franka robot')
parser.add_argument('--latent_size', type=int, default=2)
parser.add_argument('--confidence_weight', type=float, default=1.0,
help='initially I wanted to compute confidence for vae and evaluator outputs, '
'setting the confidence weight to 1. immediately pushes the confidence to 1.0.')
parser.add_argument('--train_evaluator', type=int, default=0,
help='if set to 1, trains evaluator. 0: trains vae')
parser.add_argument('--gripper_pc_npoints', type=int, default=-1,
help='number of points representing the gripper. -1 just uses the points on the finger and also the base. other values use subsampling of the gripper mesh')
parser.add_argument('--merge_pcs_in_vae_encoder', type=int, default=0,
help='whether to create unified pc in encoder by coloring the points (similar to evaluator')
parser.add_argument('--ngpus', type=int, default=1, help='number of gpus used')
parser.add_argument('--init_checkpoint_folder', type=str, default='',
help='if set to non-empty string, it initializes from the given checkpoint path')
parser.add_argument('--allowed_categories', type=str, default='',
help='if left blank uses all the categories in the <DATASET_ROOT_PATH>/splits/<category>.json, otherwise only chooses the categories that are set.')
parser.add_argument('--blacklisted_categories', type=str, default='',
help='The opposite of allowed categories')
parser.add_argument('--seed', help='Number of objects to render in scene', type=int, default=-1)
parser.add_argument('--save_steps', help='How often to save logs and metrics', type=int, default=50)
parser.add_argument('--log_steps', help='How often to print', type=int, default=50)
parser.add_argument('--use_uniform_quaternions', type=int, default=0)
parser.add_argument('--grasps_ratio', type=float, default=1.0,
help='used for checkng the effect of number of grasps per object on the success of the model.')
parser.add_argument('--model_scale', type=int, default=1,
help='the scale of the parameters. Use scale >= 1. Scale=2 increases the number of parameters in model by 4x.')
parser.add_argument('--splits_folder_name', type=str, default='splits',
help='Folder name for the directory that has all the jsons for train/test splits.')
parser.add_argument('--grasps_folder_name', type=str, default='grasps',
help='Directory that contains the grasps. Will be joined with the dataset_root_folder and the file names as defined in the splits.')
parser.add_argument('--pointnet_radius', help='Radius for ball query for PointNet++, just the first layer', type=float, default=0.02)
parser.add_argument('--pointnet_nclusters', help='Number of cluster centroids for PointNet++, just the first layer', type=int, default=128)
parser.add_argument('--gan', type=int, default=0, help='If 1 uses gan formulation to train instead of vae')
return parser
def transform_control_points_numpy(gt_grasps, batch_size):
grasp_shape = gt_grasps.shape
assert(len(grasp_shape) == 3), grasp_shape
assert(grasp_shape[1] == 4 and grasp_shape[2] == 4), grasp_shape
control_points = get_control_points(batch_size)
shape = control_points.shape
ones = np.ones((shape[0], shape[1], 1))
control_points = np.concatenate((control_points, ones), -1)
# return tf.matmul(control_points, gt_grasps, transpose_a=False, transpose_b=True)
for i in range(batch_size):
control_points[i, :, :] = control_points[i, :, :].dot(gt_grasps[i, :, :].T)
return control_points
def get_control_points(batch_size):
control_points = np.load('gripper_control_points/panda.npy')[:, :3]
control_points = [[0, 0, 0], [0, 0, 0], control_points[0, :], control_points[1, :], control_points[-2, :],
control_points[-1, :]]
control_points = np.asarray(control_points, dtype=np.float32)
control_points = np.tile(np.expand_dims(control_points, 0), [batch_size, 1, 1])
return control_points
def get_clutter_object_ids(args):
return [1] + list(range(3, args.n_objects+3))
def convert_to_pc(depth_cv, intrinsic_matrix, return_finite_depth=True):
depth = depth_cv.astype(np.float32, copy=True)
# get intrinsic matrix
K = intrinsic_matrix
Kinv = np.linalg.inv(K)
# compute the 3D points
width = depth.shape[1]
height = depth.shape[0]
# construct the 2D points matrix
x, y = np.meshgrid(np.arange(width), np.arange(height))
ones = np.ones((height, width), dtype=np.float32)
x2d = np.stack((x, y, ones), axis=2).reshape(width*height, 3)
# backprojection
R = np.dot(Kinv, x2d.transpose())
# compute the 3D points
X = np.multiply(np.tile(depth.reshape(1, width*height), (3, 1)), R)
X = np.array(X).transpose()
selection = None
if return_finite_depth:
selection = np.isfinite(X[:, 0])
X = X[selection, :]
return X, selection