From 3f5e7389242ba1f82554a73d789f442e7a23f8f4 Mon Sep 17 00:00:00 2001 From: grantbuster Date: Fri, 9 Aug 2024 17:09:49 -0600 Subject: [PATCH] added test for trainable gaussian pool --- tests/test_layers.py | 58 +++++++++++++++++++++++++++++++++++++++----- 1 file changed, 52 insertions(+), 6 deletions(-) diff --git a/tests/test_layers.py b/tests/test_layers.py index a3f0b4f..3a117e0 100644 --- a/tests/test_layers.py +++ b/tests/test_layers.py @@ -467,10 +467,10 @@ def test_gaussian_pooling(): for stdev in [1, 2]: layer = GaussianAveragePooling2D(pool_size=5, strides=1, sigma=stdev) _ = layer(np.ones((24, 100, 100, 35))) - kernel = layer._kernel.numpy() + kernel = layer.make_kernel().numpy() kernels.append(kernel) - assert kernel[:, :, 0, 0].sum() == 1 + assert np.allclose(kernel[:, :, 0, 0].sum(), 1, rtol=1e-4) assert kernel[2, 2, 0, 0] == kernel.max() assert kernel[0, 0, 0, 0] == kernel.min() assert kernel[-1, -1, 0, 0] == kernel.min() @@ -485,7 +485,7 @@ def test_gaussian_pooling(): normalize=False) x_in = np.random.uniform(0, 1, (1, 12, 12, 3)) out1 = model1.predict(x_in) - kernel1 = model1.layers[0]._kernel[:, :, 0, 0].numpy() + kernel1 = model1.layers[0].make_kernel()[:, :, 0, 0].numpy() for idf in range(out1.shape[-1]): test = (x_in[0, :, :, idf] * kernel1).sum() @@ -499,7 +499,7 @@ def test_gaussian_pooling(): model1.save_model(model_path) model2 = TfModel.load(model_path) - kernel2 = model2.layers[0]._kernel[:, :, 0, 0].numpy() + kernel2 = model2.layers[0].make_kernel()[:, :, 0, 0].numpy() out2 = model2.predict(x_in) assert np.allclose(kernel1, kernel2) assert np.allclose(out1, out2) @@ -509,6 +509,52 @@ def test_gaussian_pooling(): _ = model2.predict(x_in) +def test_gaussian_pooling_train(): + """Test the trainable sigma functionality of the gaussian average pool""" + pool_size = 5 + xtrain = np.random.uniform(0, 1, (10, pool_size, pool_size, 1)) + ytrain = np.random.uniform(0, 1, (10, 1, 1, 1)) + hidden_layers = [{'class': 'GaussianAveragePooling2D', + 'pool_size': pool_size, 'trainable': False, + 'strides': 1, 'padding': 'valid', 'sigma': 2}] + + model = TfModel.build(['x'], ['y'], + hidden_layers=hidden_layers, + input_layer=False, + output_layer=False, + learning_rate=1e-3, + normalize=(True, True)) + model.layers[0].build(xtrain.shape) + assert len(model.layers[0].trainable_weights) == 0 + + hidden_layers[0]['trainable'] = True + model = TfModel.build(['x'], ['y'], + hidden_layers=hidden_layers, + input_layer=False, + output_layer=False, + learning_rate=1e-3, + normalize=(True, True)) + model.layers[0].build(xtrain.shape) + assert len(model.layers[0].trainable_weights) == 1 + + layer = model.layers[0] + sigma1 = float(layer.sigma) + kernel1 = layer.make_kernel().numpy().copy() + model.train_model(xtrain, ytrain, epochs=10) + sigma2 = float(layer.sigma) + kernel2 = layer.make_kernel().numpy().copy() + + assert not np.allclose(sigma1, sigma2) + assert not np.allclose(kernel1, kernel2) + + with TemporaryDirectory() as td: + model_path = os.path.join(td, 'test_model') + model.save_model(model_path) + model2 = TfModel.load(model_path) + + assert np.allclose(model.predict(xtrain), model2.predict(xtrain)) + + def test_siglin(): """Test the sigmoid linear layer""" n_points = 1000 @@ -532,7 +578,7 @@ def test_logtransform(): lt = LogTransform(adder=1) ilt = LogTransform(adder=1, inverse=True) - x = np.random.uniform(0, 10, (n_points + 1, 2)) + x = np.random.uniform(0.01, 10, (n_points + 1, 2)) y = lt(x).numpy() xinv = ilt(y).numpy() assert not np.isnan(y).any() @@ -541,7 +587,7 @@ def test_logtransform(): lt = LogTransform(adder=1, idf=1) ilt = LogTransform(adder=1, inverse=True, idf=1) - x = np.random.uniform(0, 10, (n_points + 1, 2)) + x = np.random.uniform(0.01, 10, (n_points + 1, 2)) y = lt(x).numpy() xinv = ilt(y).numpy() assert np.allclose(x[:, 0], y[:, 0])