forked from kojima-takeshi188/zero_shot_cot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
217 lines (186 loc) · 9.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import argparse
import logging
import torch
import random
import time
import os
from utils import *
def main():
args = parse_arguments()
print('*****************************')
print(args)
print('*****************************')
fix_seed(args.random_seed)
print("OPENAI_API_KEY:")
print(os.getenv("OPENAI_API_KEY"))
# Initialize decoder class (load model and tokenizer) ...
decoder = Decoder(args)
print("setup data loader ...")
dataloader = setup_data_loader(args)
print_now()
if args.method == "few_shot":
demo = create_demo_text(args, cot_flag=False)
elif args.method == "few_shot_cot":
demo = create_demo_text(args, cot_flag=True)
else:
pass
total = 0
correct_list = []
for i, data in enumerate(dataloader):
print('*************************')
print("{}st data".format(i+1))
# Prepare question template ...
x, y = data
x = "Q: " + x[0] + "\n" + "A:"
y = y[0].strip()
if args.method == "zero_shot":
x = x + " " + args.direct_answer_trigger_for_zeroshot
elif args.method == "zero_shot_cot":
x = x + " " + args.cot_trigger
elif args.method == "few_shot":
x = demo + x
elif args.method == "few_shot_cot":
x = demo + x
else:
raise ValueError("method is not properly defined ...")
# Answer prediction by generating text ...
max_length = args.max_length_cot if "cot" in args.method else args.max_length_direct
z = decoder.decode(args, x, max_length, i, 1)
# Answer extraction for zero-shot-cot ...
if args.method == "zero_shot_cot":
z2 = x + z + " " + args.direct_answer_trigger_for_zeroshot_cot
max_length = args.max_length_direct
pred = decoder.decode(args, z2, max_length, i, 2)
print(z2 + pred)
else:
pred = z
print(x + pred)
# Clensing of predicted answer ...
pred = answer_cleansing(args, pred)
# Choose the most frequent answer from the list ...
print("pred : {}".format(pred))
print("GT : " + y)
print('*************************')
# Checking answer ...
correct = (np.array([pred]) == np.array([y])).sum().item()
correct_list.append(correct)
total += 1 #np.array([y]).size(0)
if (args.limit_dataset_size != 0) and ((i+1) >= args.limit_dataset_size):
break
#raise ValueError("Stop !!")
# Calculate accuracy ...
accuracy = (sum(correct_list) * 1.0 / total) * 100
print("accuracy : {}".format(accuracy))
def parse_arguments():
parser = argparse.ArgumentParser(description="Zero-shot-CoT")
parser.add_argument(
"--api_log_file_name", type=str, default=None, help="mandatory argument ! json['i>=1']['j==1']['k={1,2}'][{'request', response'}]"
)
parser.add_argument("--random_seed", type=int, default=1, help="random seed")
parser.add_argument(
"--dataset", type=str, default="aqua", choices=["aqua", "gsm8k", "commonsensqa", "addsub", "multiarith", "strategyqa", "svamp", "singleeq", "bigbench_date", "object_tracking", "coin_flip", "last_letters"], help="dataset used for experiment"
)
parser.add_argument("--minibatch_size", type=int, default=1, choices=[1], help="minibatch size should be 1 because GPT-3 API takes only 1 input for each request")
parser.add_argument("--max_num_worker", type=int, default=3, help="maximum number of workers for dataloader")
parser.add_argument(
"--model", type=str, default="gpt3", choices=["gpt3", "gpt3-medium", "gpt3-large", "gpt3-xl"], help="model used for decoding. Note that 'gpt3' are the smallest models."
)
parser.add_argument(
"--method", type=str, default="zero_shot_cot", choices=["zero_shot", "zero_shot_cot", "few_shot", "few_shot_cot"], help="method"
)
parser.add_argument(
"--cot_trigger_no", type=int, default=1, help="A trigger sentence that elicits a model to execute chain of thought"
)
parser.add_argument(
"--max_length_cot", type=int, default=128, help="maximum length of output tokens by model for reasoning extraction"
)
parser.add_argument(
"--max_length_direct", type=int, default=32, help="maximum length of output tokens by model for answer extraction"
)
parser.add_argument(
"--limit_dataset_size", type=int, default=10, help="whether to limit test dataset size. if 0, the dataset size is unlimited and we use all the samples in the dataset for testing."
)
parser.add_argument(
"--api_time_interval", type=float, default=1.0, help=""
)
parser.add_argument(
"--log_dir", type=str, default="./log/", help="log directory"
)
args = parser.parse_args()
if args.dataset == "aqua":
args.dataset_path = "./dataset/AQuA/test.json"
args.direct_answer_trigger = "\nTherefore, among A through E, the answer is"
elif args.dataset == "gsm8k":
args.dataset_path = "./dataset/grade-school-math/test.jsonl"
args.direct_answer_trigger = "\nTherefore, the answer (arabic numerals) is"
elif args.dataset == "commonsensqa":
args.dataset_path = "./dataset/CommonsenseQA/dev_rand_split.jsonl"
args.direct_answer_trigger = "\nTherefore, among A through E, the answer is"
args.plausible_answer_trigger = "Choose the most plausible answer from among choices A through E."
elif args.dataset == "addsub":
args.dataset_path = "./dataset/AddSub/AddSub.json"
args.direct_answer_trigger = "\nTherefore, the answer (arabic numerals) is"
elif args.dataset == "multiarith":
args.dataset_path = "./dataset/MultiArith/MultiArith.json"
args.direct_answer_trigger = "\nTherefore, the answer (arabic numerals) is"
elif args.dataset == "strategyqa":
args.dataset_path = "./dataset/StrategyQA/task.json"
args.direct_answer_trigger = "\nTherefore, the answer (Yes or No) is"
elif args.dataset == "svamp":
args.dataset_path = "./dataset/SVAMP/SVAMP.json"
args.direct_answer_trigger = "\nTherefore, the answer (arabic numerals) is"
elif args.dataset == "singleeq":
args.dataset_path = "./dataset/SingleEq/questions.json"
args.direct_answer_trigger = "\nTherefore, the answer (arabic numerals) is"
elif args.dataset == "bigbench_date":
args.dataset_path = "./dataset/Bigbench_Date/task.json"
args.direct_answer_trigger = "\nTherefore, among A through F, the answer is"
elif args.dataset == "object_tracking":
args.dataset_path = "./dataset/Bigbench_object_tracking/task.json"
args.direct_answer_trigger = "\nTherefore, among A through C, the answer is"
elif args.dataset == "coin_flip":
args.dataset_path = "./dataset/coin_flip/coin_flip.json"
args.direct_answer_trigger = "\nTherefore, the answer (Yes or No) is"
elif args.dataset == "last_letters":
args.dataset_path = "./dataset/last_letters/last_letters.json"
args.direct_answer_trigger = "\nTherefore, the answer is"
else:
raise ValueError("dataset is not properly defined ...")
# "Therefore, the answer ..." -> "The answer ..."
trigger = args.direct_answer_trigger.replace("\nTherefore, ", "")
args.direct_answer_trigger_for_zeroshot = trigger[0].upper() + trigger[1:]
args.direct_answer_trigger_for_zeroshot_cot = args.direct_answer_trigger
args.direct_answer_trigger_for_fewshot = "The answer is"
if args.cot_trigger_no == 1:
args.cot_trigger = "Let's think step by step."
elif args.cot_trigger_no == 2:
args.cot_trigger = "We should think about this step by step."
elif args.cot_trigger_no == 3:
args.cot_trigger = "First,"
elif args.cot_trigger_no == 4:
args.cot_trigger = "Before we dive into the answer,"
elif args.cot_trigger_no == 5:
args.cot_trigger = "Proof followed by the answer."
elif args.cot_trigger_no == 6:
args.cot_trigger = "Let's think step by step in a realistic way."
elif args.cot_trigger_no == 7:
args.cot_trigger = "Let's think step by step using common sense and knowledge."
elif args.cot_trigger_no == 8:
args.cot_trigger = "Let's think like a detective step by step."
elif args.cot_trigger_no == 9:
args.cot_trigger = "Let's think about this logically."
elif args.cot_trigger_no == 10:
args.cot_trigger = "Let's think step by step. First,"
elif args.cot_trigger_no == 11:
args.cot_trigger = "Let's think"
elif args.cot_trigger_no == 12:
args.cot_trigger = "Let's solve this problem by splitting it into steps."
elif args.cot_trigger_no == 13:
args.cot_trigger = "The answer is after the proof."
elif args.cot_trigger_no == 14:
args.cot_trigger = "Let's be realistic and think step by step."
else:
raise ValueError("cot_trigger_no is not properly defined ...")
return args
if __name__ == "__main__":
main()