-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrand-infer.rs
277 lines (237 loc) · 8.29 KB
/
rand-infer.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
use std::sync::{Arc, OnceLock};
use clap::Parser;
use color_eyre::{eyre::eyre, Result};
use mtc_token_healing::{
InferRequest, InferResponse, Prediction, ReorderedTokenId, SearchTree, TokenId,
VocabPrefixAutomaton,
};
use regex::Regex;
use tokenizers::{AddedToken, Tokenizer};
use tokio::runtime::Runtime;
pub struct DummyInfer {
tree: SearchTree,
current_tokens_buffer: Vec<TokenId>,
}
impl DummyInfer {
pub async fn new(tree: SearchTree) -> Result<Self> {
Ok(Self {
tree,
current_tokens_buffer: Default::default(),
})
}
pub async fn handle_infer_req(&mut self, req: InferRequest) -> Result<InferResponse> {
println!("request: {req:?}");
if req.backtrace > 0 {
let buf = &mut self.current_tokens_buffer;
assert!(buf.len() >= req.backtrace);
buf.drain(buf.len() - req.backtrace..);
println!("backtracing: {}", req.backtrace);
}
if let Some(token) = req.feed {
self.current_tokens_buffer.push(token);
println!("decoding: {token:?}\n{:?}", self.current_tokens_buffer);
} else {
assert!(self.current_tokens_buffer.is_empty());
// println!("prefilling:\n{:?}", self.tree.prefilled_token_ids())
}
let decoded_len = self.current_tokens_buffer.len() as i32;
let sampled = if let Some((lower, upper)) = req.sampling_id_range.as_ref() {
assert!(lower < upper);
let id = rand::random::<u32>() % (upper.0 - lower.0) + lower.0;
Some(Prediction {
token_id: ReorderedTokenId(id),
// log_prob: rand::random(),
// NOTE: The factor is to normalize accumulated random fake log_prob.
// **It is not needed for real log_prob generated from language models.**
log_prob: rand::random::<f64>() * f64::powi(0.5, decoded_len),
})
} else {
None
};
let sparse_choices = req
.sparse_choices
.iter()
.map(|&id| Prediction {
token_id: id,
// log_prob: rand::random(),
// NOTE: The factor is to normalize accumulated random fake log_prob.
// **It is not needed for real log_prob generated from language models.**
log_prob: rand::random::<f64>() * f64::powi(0.5, decoded_len + 1),
})
.collect();
let res = InferResponse {
sampled,
sparse_choices,
};
println!("response: {res:?}");
Ok(res)
}
}
fn parse_byte_repr<S: AsRef<str>>(s: S) -> Result<u8, S> {
static BYTE_REPR: OnceLock<Regex> = OnceLock::new();
let byte_repr = BYTE_REPR
.get_or_init(|| Regex::new("^<0[xX][0-9a-fA-F]{2}>$").expect("invalid byte repr regex?"));
const PRE_LEN: usize = "<0x".len();
const SUF_LEN: usize = ">".len();
if byte_repr.is_match(s.as_ref()) {
if let Some(hex) = s
.as_ref()
.get(PRE_LEN..s.as_ref().len().saturating_sub(SUF_LEN).max(PRE_LEN))
{
if let Ok(b) = u8::from_str_radix(hex, 16) {
return Ok(b);
}
}
}
Err(s)
}
fn build_vocab<T: AsRef<Tokenizer>>(tokenizer: T) -> Result<Vec<Vec<u8>>> {
let mut tokenizer = tokenizer.as_ref().clone();
let vocab_size = tokenizer.get_vocab_size(true);
let dummy_special_token = AddedToken::from("<*dummy-surrounding*>", true);
let add_token_res = tokenizer.add_special_tokens(&[dummy_special_token.clone()]);
assert!(add_token_res == 1);
let &dummy_token_id = tokenizer
.get_added_vocabulary()
.get_vocab()
.get(&dummy_special_token.content)
.expect("new dummy special token should be in the vocab");
assert!((dummy_token_id as usize) >= vocab_size);
let mut token_bytes = vec![Vec::new(); vocab_size];
for (token, id) in tokenizer.get_vocab(true) {
if id == dummy_token_id {
continue;
}
assert!((id as usize) < vocab_size);
match parse_byte_repr(token) {
Ok(byte) => token_bytes[id as usize].push(byte),
Err(_) => {
if tokenizer
.get_added_vocabulary()
.get_added_tokens_decoder()
.contains_key(&id)
{
// ignore special tokens
continue;
}
let decoded = tokenizer
.decode(&[dummy_token_id, id, dummy_token_id], false)
.map_err(|e| eyre!(e))?;
assert!(decoded.starts_with(&dummy_special_token.content));
assert!(decoded.ends_with(&dummy_special_token.content));
let offset = dummy_special_token.content.len();
token_bytes[id as usize].extend(decoded[offset..decoded.len() - offset].as_bytes())
}
}
}
Ok(token_bytes)
}
#[derive(Clone, Debug, Parser)]
struct Args {
#[arg(short, long, env, default_value = "codellama/CodeLlama-7b-Instruct-hf")]
tokenizer_path: String,
}
async fn main_body() -> Result<()> {
let args = Args::try_parse()?;
let tokenizer =
Arc::new(Tokenizer::from_pretrained(&args.tokenizer_path, None).map_err(|e| eyre!(e))?);
let vocab = build_vocab(tokenizer.clone())?;
let automaton = Arc::new(VocabPrefixAutomaton::new(vocab));
println!("waiting for text (in json format) from stdin...");
let text: String = serde_json::from_reader(std::io::stdin())?;
println!("prompt: {text:?}\n");
let tokenized = tokenizer
.encode(text.as_str(), true)
.map_err(|e| eyre!(e))?;
let prefilled_text = tokenizer
.decode(tokenized.get_ids(), false)
.map_err(|e| eyre!(e))?;
let offset = tokenized
.get_ids()
.iter()
.filter_map(|&id| {
tokenizer
.get_added_vocabulary()
.get_added_tokens_decoder()
.get(&id)
})
.last()
.and_then(|special_token| {
println!("{special_token:?}");
text.rfind(&special_token.content)
.map(|pos| pos + special_token.content.len())
})
.unwrap_or(0);
println!("search from pos {offset}\n");
let Some((tree, mut req)) = SearchTree::new(
automaton.clone(),
|end_pos| async {
let mut res = Vec::new();
for pos in end_pos {
let tokenized = tokenizer.encode(&text[..pos], true)?;
res.push((pos, tokenized.get_ids().to_vec()))
}
Ok::<_, tokenizers::Error>(res)
},
text.as_str(),
offset,
)
.await
.map_err(|e| eyre!(e))?
else {
println!("no token healing required");
return Ok(());
};
let mut dummy_infer = DummyInfer::new(tree).await?;
println!(
"prefilled tokens:\n{:?}\n",
Vec::from_iter(
dummy_infer
.tree
.prefilled_token_ids()
.iter()
.map(|&id| tokenizer.id_to_token(id))
),
);
loop {
let res = dummy_infer.handle_infer_req(req).await?;
req = if let Some(req) = dummy_infer.tree.feed(res)? {
req
} else {
break;
};
}
println!(
"\nbest choice:\n{:?}\n",
dummy_infer.tree.get_best_choice()?,
);
let best_token_ids_to_decode = dummy_infer.tree.get_best_choice()?.extra_token_ids.clone();
println!(
"best choice tokens:\n{:?}\n",
Vec::from_iter(
best_token_ids_to_decode
.iter()
.map(|&id| tokenizer.id_to_token(id))
),
);
let full_token_ids: Vec<_> = dummy_infer
.tree
.prefilled_token_ids()
.iter()
.chain(best_token_ids_to_decode.iter())
.copied()
.collect();
let full_text = tokenizer
.decode(&full_token_ids, false)
.map_err(|e| eyre!(e))?;
println!(
"decoded best choice:\n{:?}\n",
&full_text[prefilled_text.len()..]
);
println!("complete best choice text:\n{:?}\n", full_text);
Ok(())
}
fn main() -> Result<()> {
let runtime = Runtime::new()?;
runtime.block_on(main_body())
}