From a89482815560191ba676abacb5e0246f2e833e28 Mon Sep 17 00:00:00 2001 From: yaoyongqiang Date: Thu, 30 Dec 2021 15:09:49 +0800 Subject: [PATCH] doc(eod): update readme --- README.md | 13 +++++++------ 1 file changed, 7 insertions(+), 6 deletions(-) diff --git a/README.md b/README.md index d8f2c6e3..4ec8628e 100644 --- a/README.md +++ b/README.md @@ -10,7 +10,8 @@ It aim on provide two key feature about Object Detection: + Efficient: we will focus on training **VERY HIGH ACCURARY** single-shot detection model, and model compress (quantization/sparsity) will be heavy address. + Easy: easy to use, easy to add new features(backbone/head/neck), easy to deploy. + Large-Scale Dataset Training [Detail](https://github.com/ModelTC/rank_dataset) -+ Equalized Focal Loss for Dense Long-Tailed Object Detection ++ Equalized Focal Loss for Dense Long-Tailed Object Detection [EFL](docs/equalized_focal_loss.md) ++ Improve-YOLOX [YOLOX-RET](docs/benchmark.md) The master branch works with **PyTorch 1.8.1**. @@ -62,8 +63,7 @@ Step3: fp16, add fp16 setting into runtime config ```yaml runtime: - runner: - type: fp16 + fp16: True ``` ### Eval @@ -121,13 +121,14 @@ mpirun -np 8 python -m eod train --config configs/det/yolox/yolox_tiny.yaml --la ## Custom Example -* [custom dataset](configs/custom/custom_dataset.yaml) -* [rank_dataset](configs/custom/rank_dataset.yaml) +* [custom dataset](configs/det/custom/custom_dataset.yaml) +* [rank_dataset](configs/det/custom/rank_dataset.yaml) ## Benckmark * [YOLOX](docs/benchmark.md) -* [YOLOX-Ret] (docs)/benchmark.md +* [YOLOX-Ret](docs/benchmark.md +* [EFL] (docs/equalized_focal_loss.md) * [YOLOV5](docs/benchmark.md) * [RetinaNet](docs/benchmark.md)