forked from pyg-team/pytorch_geometric
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpyproject.toml
169 lines (157 loc) · 3.92 KB
/
pyproject.toml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
[build-system]
requires=["flit_core >=3.2,<4"]
build-backend="flit_core.buildapi"
[project]
name="torch_geometric"
version="2.4.0"
authors=[
{name="Matthias Fey", email="[email protected]"},
]
description="Graph Neural Network Library for PyTorch"
readme="README.md"
requires-python=">=3.8"
keywords=[
"deep-learning",
"pytorch",
"geometric-deep-learning",
"graph-neural-networks",
"graph-convolutional-networks",
]
classifiers=[
"Development Status :: 5 - Production/Stable",
"License :: OSI Approved :: MIT License",
"Programming Language :: Python",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
"Programming Language :: Python :: 3.11",
"Programming Language :: Python :: 3 :: Only",
]
dependencies=[
"tqdm",
"numpy",
"scipy",
"jinja2",
"requests",
"pyparsing",
"scikit-learn",
"psutil>=5.8.0",
]
[project.optional-dependencies]
graphgym=[
"yacs",
"hydra-core",
"protobuf<4.21",
"pytorch-lightning",
]
modelhub=[
"huggingface_hub"
]
benchmark=[
"protobuf<4.21",
"wandb",
"pandas",
"networkx",
"matplotlib",
]
test=[
"pytest",
"pytest-cov",
"onnx",
"onnxruntime",
]
dev=[
"torch_geometric[test]",
"pre-commit",
]
full = [
"torch_geometric[graphgym, modelhub]",
"ase",
"h5py",
"numba",
"sympy",
"pandas",
"captum",
"rdflib",
"trimesh",
"networkx",
"graphviz",
"tabulate",
"matplotlib",
"pynndescent",
"torchmetrics",
"scikit-image",
"pytorch-memlab",
"pgmpy",
"opt_einsum",
"statsmodels",
"rdkit",
]
[project.urls]
homepage="https://pyg.org"
documentation="https://pytorch-geometric.readthedocs.io"
repository="https://github.com/pyg-team/pytorch_geometric.git"
changelog="https://github.com/pyg-team/pytorch_geometric/blob/master/CHANGELOG.md"
[tool.flit.module]
name="torch_geometric"
[tool.yapf]
based_on_style = "pep8"
split_before_named_assigns = false
blank_line_before_nested_class_or_def = false
[tool.flake8]
ignore = ["F811", "W503", "W504"]
[tool.pyright]
include = ["torch_geometric/utils/*"]
[tool.isort]
multi_line_output = 3
include_trailing_comma = true
skip = [".gitignore", "__init__.py"]
[tool.pytest.ini_options]
addopts = "--capture=no"
filterwarnings = [
"ignore:distutils:DeprecationWarning",
"ignore:'torch_geometric.contrib' contains experimental code:UserWarning",
# Filter `torch` warnings:
"ignore:The PyTorch API of nested tensors is in prototype stage:UserWarning",
"ignore:scatter_reduce():UserWarning",
"ignore:Sparse CSR tensor support is in beta state:UserWarning",
"ignore:Sparse CSC tensor support is in beta state:UserWarning",
"ignore:torch.distributed._sharded_tensor will be deprecated:DeprecationWarning",
# Filter `captum` warnings:
"ignore:Setting backward hooks on ReLU activations:UserWarning",
"ignore:.*did not already require gradients, required_grads has been set automatically:UserWarning",
# Filter `pytorch_lightning` warnings:
"ignore:GPU available but not used:UserWarning",
]
[tool.pylint.messages_control]
disable = [
"import-outside-toplevel",
"missing-module-docstring",
"missing-class-docstring",
"missing-function-docstring",
"empty-docstring",
"import-error",
"too-many-arguments",
"arguments-differ",
"invalid-name",
"redefined-builtin",
]
attr-rgx = "[A-Za-z_][A-Za-z0-9_]*$"
argument-rgx = "[A-Za-z_][A-Za-z0-9_]*$"
variable-rgx = "[A-Za-z_][A-Za-z0-9_]*$"
generated-members = ["torch.*"]
[tool.coverage.run]
source = ["torch_geometric"]
omit = [
"torch_geometric/datasets/*",
"torch_geometric/data/extract.py",
"torch_geometric/nn/data_parallel.py",
]
[tool.coverage.report]
exclude_lines = [
"pragma: no cover",
"pass",
"raise NotImplementedError",
"register_parameter",
"torch.cuda.is_available",
]