-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathhelperfunctions.py
816 lines (689 loc) · 31.4 KB
/
helperfunctions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
from itertools import product
import json
import numpy as np
import pandas as pd
from sklearn.neighbors import kneighbors_graph
import matplotlib.pyplot as plt
from matplotlib import cm
import bct
from sklearn.svm import SVR
from sklearn.neighbors import NearestNeighbors
from sklearn.model_selection import KFold
from sklearn.gaussian_process.kernels import Matern, WhiteKernel
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.pipeline import Pipeline
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import StratifiedKFold
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from scipy.stats import hypergeom, spearmanr
from bayes_opt import BayesianOptimization
from bayes_opt import UtilityFunction
from nilearn.connectome import ConnectivityMeasure
from tqdm import tqdm
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import roc_auc_score
from sklearn.model_selection import train_test_split
# Set the random seed
np.random.seed(2)
rng = np.random.default_rng(2)
def gateway_coef_sign(W, ci, centrality_type='degree'):
'''
The gateway coefficient is a variant of participation coefficient.
It is weighted by how critical the connections are to intermodular
connectivity (e.g. if a uode is the only connection between its
module and another module, it will have a higher gateway coefficient,
unlike participation coefficient).
Parameters
----------
W : NxN np.ndarray
undirected signed connection matrix
ci : Nx1 np.ndarray
community affiliation vector
centrality_type : enum
'degree' - uses the weighted degree (i.e, node strength)
'betweenness' - uses the betweenness centrality
Returns
-------
Gpos : Nx1 np.ndarray
gateway coefficient for positive weights
Gneg : Nx1 np.ndarray
gateway coefficient for negative weights
Reference:
Vargas ER, Wahl LM, Eur Phys J B (2014) 87:1-10
Note
----
This function was copied from the bctpy package. The main diffrence is that
line 84 was commented out to avoid unnecessary printing.
'''
_, ci = np.unique(ci, return_inverse=True)
ci += 1
n = len(W)
np.fill_diagonal(W, 0)
def gcoef(W):
#strength
s = np.sum(W, axis=1)
#neighbor community affiliation
Gc = np.inner((W != 0), np.diag(ci))
#community specific neighbors
Sc2 = np.zeros((n,))
#extra modular weighting
ksm = np.zeros((n,))
#intra modular wieghting
centm = np.zeros((n,))
if centrality_type == 'degree':
cent = s.copy()
elif centrality_type == 'betweenness':
cent = bct.betweenness_wei(invert(W))
nr_modules = int(np.max(ci))
for i in range(1, nr_modules+1):
ks = np.sum(W * (Gc == i), axis=1)
#print(np.sum(ks))
Sc2 += ks ** 2
for j in range(1, nr_modules+1):
#calculate extramodular weights
ksm[ci == j] += ks[ci == j] / np.sum(ks[ci == j])
#calculate intramodular weights
centm[ci == i] = np.sum(cent[ci == i])
#print(Gc)
#print(centm)
#print(ksm)
#print(ks)
centm = centm / max(centm)
#calculate total weights
gs = (1 - ksm * centm) ** 2
Gw = 1 - Sc2 * gs / s ** 2
Gw[np.where(np.isnan(Gw))] = 0
Gw[np.where(np.logical_not(Gw))] = 0
return Gw
G_pos = gcoef(W * (W > 0))
G_neg = gcoef(-W * (W < 0))
return G_pos, G_neg
def get_dissimilarity_n_neighbours(all_neighbours_orig,
all_neighbours_reduced):
'''
Calculate the dissimilarity
Parameters
----------
all_neighbours_orig:
all_neighbours_reduced:
Returns
-------
all_dissimilarity: Dissimilarity scores between the original and reduced
space
'''
all_dissimilarity = []
for K in range(len(all_neighbours_reduced)):
# Find the set of different indices
diff = set(sorted(all_neighbours_orig[K])) - \
set(sorted(all_neighbours_reduced[K]))
# Calculate the dissimilarity
epsilon = len(diff) / len(all_neighbours_orig[K])
all_dissimilarity.append(epsilon)
return all_dissimilarity
def get_models_neighbours(N, n_neighbors_step, data):
'''
Calculate the dissimilarity
Parameters
----------
n_neighbours: number of neighbours to analyse
data: data (pairwise_subjects, n_analysis)
Returns
-------
all_dissimilarity: Dissimilarity scores between the original and reduced
space
'''
n_neighbours = range(2, N, n_neighbors_step)
all_adj = np.zeros((len(data), len(data), len(n_neighbours)))
all_neighbours_orig = []
for idx, n_neighbour in enumerate(n_neighbours):
adj = kneighbors_graph(data, n_neighbour, mode='distance',
metric='euclidean')
adj_array = adj.toarray()
all_adj[:, :, idx] = adj_array
nneighbours_orig = np.nonzero(adj_array)
nneighbours_orig = [item for item in zip(nneighbours_orig[0],
nneighbours_orig[1])]
all_neighbours_orig.append(nneighbours_orig)
return all_neighbours_orig, all_adj
def get_null_distribution(N, n_neighbors_step):
# Calculate the null distribution using binary distribution
def expectation(N, K):
rv = hypergeom(N, K, K)
x = np.arange(0, K)
pmf = rv.pmf(x)
return np.sum(x*pmf)
null_distribution = []
for K in range(2, N, n_neighbors_step):
E = expectation(N, K)
diss = 1 - (E/K)
null_distribution.append(diss)
return null_distribution
def objective_func_reg(TempModelNum, Y, Sparsities_Run, Data_Run, BCT_models, BCT_Run,
CommunityIDs, MainNoNan, GSRNoNan):
'''
Define the objective function for the Bayesian optimization. This consists
of the number indicating which model to test, a count variable to help
control which subjects are tested, a random permutation of the indices of the
subjects, the predictor variables and the actual y outcomes, the number of
subjects to include in each iteration
Parameters
----------
TempModelNum: idx of the analysis being run
Y: Y variable that will be predicted
Sparsities_Run: List of threshold used
Data_Run: Data used for creating the space
BCT_models: Dictionary containing the list of models used
BCT_Run: List containing the order in which the BCT models were run
CommunityIDs: Information about the Yeo network Ids
data1: Motion Regression functional connectivity data of the subjects
that were not used to create the space
data2: Global Signal Regression data for the subjects that gridsearch.cv_results['mean_test_score']were not used
to create the space
ClassOrRegress: Define if it is a classification or regression problem
(0: classification; 1 regression)
Returns
-------
score: Returns the MAE of the predictions
'''
TotalRegions = 346
if Data_Run[TempModelNum] == 'MRS':
TempData = MainNoNan
elif Data_Run[TempModelNum] == 'GRS':
TempData = GSRNoNan
else:
ValueError('This type of pre-processing is not supported')
TotalSubjects = TempData.shape[2]
TempThreshold = Sparsities_Run[TempModelNum]
BCT_Num = BCT_Run[TempModelNum]
TempResults = np.zeros([TotalSubjects, TotalRegions])
for SubNum in range(0, TotalSubjects):
x = bct.threshold_proportional(TempData[:, :, SubNum],
TempThreshold, copy=True)
if BCT_Num == 'local efficiency':
ss = BCT_models[BCT_Num](x, 1);
elif BCT_Num == 'modularity (louvain)':
temp = BCT_models[BCT_Num](x);
ss = temp[0]
elif BCT_Num== 'modularity (probtune)':
temp = BCT_models[BCT_Num](x);
ss = temp[0]
elif BCT_Num == 'participation coefficient':
ss = BCT_models[BCT_Num](x, CommunityIDs);
elif BCT_Num == 'module degree z-score':
ss = BCT_models[BCT_Num](x, CommunityIDs);
elif BCT_Num == 'pagerank centrality':
ss = BCT_models[BCT_Num](x, 0.85)
elif BCT_Num == 'diversity coefficient':
temp = BCT_models[BCT_Num](x, CommunityIDs)
ss = temp[0]
elif BCT_Num == 'gateway degree':
temp = BCT_models[BCT_Num](x, CommunityIDs)
ss = temp[0]
elif BCT_Num == 'k-core centrality':
temp = BCT_models[BCT_Num](x)
ss = temp[0]
else:
ss = BCT_models[BCT_Num](x)
#For each subject for each approach keep the 346 regional values.
TempResults[SubNum, :] = ss
X_train, X_test, y_train, y_test = train_test_split(TempResults, Y.ravel(),
test_size=.3, random_state=0)
model = Pipeline([('scaler', StandardScaler()), ('svr', SVR())])
model.fit(X_train, y_train)
pred = model.predict(X_test)
# Note: the scores were divided by 10 in order to keep the values close
# to 0 for avoiding problems with the Bayesian Optimisation
scores = - mean_absolute_error(y_test, pred)/10
return scores
def objective_func_class(data_run, TempModelNum, Y, files_id, data_root, output_path):
'''
Similar to previous
TODO: need to merge it with the other code
ClassOrRegress:Define if it is a classification or regression problem
(0: classification; 1 regression)
'''
TotalSubjects = len(Y)
TempResults = []
pipeline = data_run[TempModelNum][1]
strategy = data_run[TempModelNum][2]
derivative = data_run[TempModelNum][0]
data_path = data_root / 'Outputs' / pipeline / strategy / derivative
# Load the data for every subject.
for file_id in files_id:
subject_path = data_path / f'{file_id}_{derivative}.1D'
rois = pd.read_csv(subject_path, delimiter='\t')
TempResults.append(rois.to_numpy())
# Calculate the correlation using the selected meatric
correlation_measure = ConnectivityMeasure(kind=data_run[TempModelNum][3])
correlation_matrix = correlation_measure.fit_transform(TempResults)
# Use only the lower diagonal matrix
lower_diag_n = int(rois.shape[1] * (rois.shape[1] - 1)/2)
rois_l = np.zeros((TotalSubjects, lower_diag_n))
for subject in range(TotalSubjects):
rois_l[subject, :] = correlation_matrix[subject, :, :][np.triu_indices(rois.shape[1], k=1)]
# Make predictions
#RandInt = np.random.randint(10000)
model = Pipeline([('scaler', StandardScaler()), ('reg', LogisticRegression(penalty='l2', random_state=0))])
X_train, X_test, y_train, y_test = train_test_split(rois_l, Y.ravel(),
test_size=.3, random_state=0)
model.fit(X_train, y_train)
pred = model.predict(X_test)
y_proba = model.predict_proba(X_test)[:, 1]
score = roc_auc_score(y_test, y_proba)
return score
def posterior(gp, x_obs, y_obs, z_obs, grid_X):
xy = (np.array([x_obs.ravel(), y_obs.ravel()])).T
gp.fit(xy, z_obs)
mu, std = gp.predict(grid_X.reshape(-1, 2), return_std=True)
return mu, std, gp
# Helper function for calculating posterior predictions only for points
# in the space where an analysis approach exists
def posteriorOnlyModels(gp, x_obs, y_obs, z_obs, AllModelEmb):
xy = (np.array([x_obs.ravel(), y_obs.ravel()])).T
gp.fit(xy, z_obs)
mu, std = gp.predict(AllModelEmb, return_std=True)
return mu, std, gp
def display_gp_mean_uncertainty(kernel, optimizer, pbounds, BadIter):
'''
Code to display the estimated GP regression mean across the space as well
as the uncertainty, showing which points were sampled.
This is based on Pedro's code
'''
x = np.linspace(pbounds['b1'][0] - 10, pbounds['b1'][1] + 10, 50).reshape(
-1, 1)
y = np.linspace(pbounds['b2'][0] - 10, pbounds['b2'][1] + 10, 50).reshape(
-1, 1)
gp = GaussianProcessRegressor(kernel=kernel, normalize_y=True,
n_restarts_optimizer=10)
#x_obs = np.array([[res["params"]["b1"]] for res in optimizer.res])
#y_obs = np.array([[res["params"]["b2"]] for res in optimizer.res])
#z_obs = np.array([res["target"] for res in optimizer.res])
x_temp = np.array([[res["params"]["b1"]] for res in optimizer.res])
y_temp = np.array([[res["params"]["b2"]] for res in optimizer.res])
z_temp = np.array([res["target"] for res in optimizer.res])
x_obs=x_temp[BadIter==0]
y_obs=y_temp[BadIter==0]
z_obs=z_temp[BadIter==0]
x1x2 = np.array(list(product(x, y)))
X0p, X1p = x1x2[:, 0].reshape(50, 50), x1x2[:, 1].reshape(50, 50)
mu, sigma, gp = _posterior(gp, x_obs, y_obs, z_obs, x1x2)
Zmu = np.reshape(mu, (50, 50))
Zsigma = np.reshape(sigma, (50, 50))
conf0 = np.array(mu - 2 * sigma).reshape(50, 50)
conf1 = np.array(mu + 2 * sigma).reshape(50, 50)
fig = plt.figure(figsize=(23, 23))
X0p, X1p = np.meshgrid(x, y,indexing='ij')
font_dict_title = {'fontsize': 25}
font_dict_label = {'fontsize': 18}
font_dict_label3 = {'fontsize': 15}
ax0 = fig.add_subplot(321)
fig0 = ax0.pcolormesh(X0p, X1p, Zmu)
ax0.set_title('Gaussian Process Predicted Mean', fontdict=font_dict_title)
ax0.set_xlabel('Component 1', fontdict=font_dict_label)
ax0.set_ylabel('Component 2', fontdict=font_dict_label)
fig.colorbar(fig0)
ax1 = fig.add_subplot(322)
fig1 = ax1.pcolormesh(X0p, X1p, Zsigma)
ax1.set_title('Gaussian Process Variance', fontdict=font_dict_title)
ax1.set_xlabel('Component 1', fontdict=font_dict_label)
ax1.set_ylabel('Component 2', fontdict=font_dict_label)
fig.colorbar(fig1)
ax2 = fig.add_subplot(323, projection='3d')
fig2 = ax2.plot_surface(X0p, X1p, Zmu, label='prediction',
cmap=cm.coolwarm)
ax2.set_title('Gaussian Process Mean', fontdict=font_dict_title)
ax2.set_xlabel('Component 1', fontdict=font_dict_label3)
ax2.set_ylabel('Component 2', fontdict=font_dict_label3)
ax2.set_zlabel('P. Mean', fontdict=font_dict_label3)
ax3 = fig.add_subplot(324, projection='3d')
fig3 = ax3.plot_surface(X0p, X1p, Zsigma, cmap=cm.coolwarm)
ax3.set_title('Gaussian Process Variance', fontdict=font_dict_title)
ax3.set_xlabel('Component 1', fontdict=font_dict_label3)
ax3.set_ylabel('Component 2', fontdict=font_dict_label3)
ax3.set_zlabel('Variance', fontdict=font_dict_label3)
ax4 = fig.add_subplot(325, projection='3d')
fig4 = ax4.plot_surface(X0p, X1p, conf0, label='confidence', alpha=0.3)
fig4 = ax4.plot_surface(X0p, X1p, conf1, label='confidence', alpha=0.3)
ax4.set_title('95% Confidence Interval', fontdict=font_dict_title)
ax4.set_xlabel('Component 1', fontdict=font_dict_label3)
ax4.set_ylabel('Component 2', fontdict=font_dict_label3)
ax4.set_zlabel('P.Mean', fontdict=font_dict_label3)
plt.show()
fig.savefig('BOptResults1.png')
return gp
def initialize_bo(ModelEmbedding, kappa, repetitions=False, DiffInit=None):
"""
"""
if repetitions:
RandomSeed = 118 + DiffInit
else:
RandomSeed = 118
np.random.seed(RandomSeed)
# Define the kernel: white noise kernel plus Mattern
kernel = 1.0 * Matern(length_scale=25, length_scale_bounds=(10,80), nu=2.5) \
+ WhiteKernel(noise_level=0.1, noise_level_bounds=(1e-10, 0.1))
# Define bounds
lb1 = np.min(ModelEmbedding[:, 0])
hb1 = np.max(ModelEmbedding[:, 0])
lb2 = np.min(ModelEmbedding[:, 1])
hb2 = np.max(ModelEmbedding[:, 1])
pbounds = {'b1': (lb1, hb1), 'b2': (lb2, hb2)}
# For finding nearest point in space to next suggested sample from
# Bayesian optimization
nbrs = NearestNeighbors(n_neighbors=2, algorithm='ball_tree'
).fit(ModelEmbedding)
# Acquisition function. Larger k (exploratory) smaller k (exploitatory)
utility = UtilityFunction(kind="ucb", kappa=kappa, xi=1e-1)
# Number of burn in random initial samples
init_points = 10
# Number of iterations of Bayesian optimization after burn in
if repetitions:
n_iter = 10
else:
n_iter = 40
# Initialise optimizer
optimizer = BayesianOptimization(f=None,
pbounds=pbounds,
verbose=4,
random_state=RandomSeed)
optimizer.set_gp_params(kernel=kernel, normalize_y=True,
n_restarts_optimizer=10)
return kernel, optimizer, utility, init_points, n_iter, pbounds, nbrs, \
RandomSeed
def run_bo(optimizer, utility, init_points, n_iter,
pbounds, nbrs, RandomSeed, ModelEmbedding, model_config,
Y, ClassOrRegress, MultivariateUnivariate=True,
repetitions=False, verbose=True):
BadIters = np.empty(0)
LastModel = -1
Iter = 0
if repetitions:
pbar = tqdm(total=(init_points) + n_iter)
else:
pbar = tqdm(total=(2 * init_points) + n_iter)
while Iter < init_points + n_iter:
np.random.seed(RandomSeed+Iter)
# If burnin
if Iter < init_points:
# Choose point in space to probe next in search space randomly
next_point_to_probe = {'b1': np.random.uniform(pbounds['b1'][0],
pbounds['b1'][1]),
'b2': np.random.uniform(pbounds['b2'][0],
pbounds['b2'][1])}
if verbose:
print("Next point to probe is:", next_point_to_probe)
s1, s2 = next_point_to_probe.values()
# if optimization
else:
# Choose point in space to probe next in search space using optimizer
next_point_to_probe = optimizer.suggest(utility)
if verbose:
print("Next point to probe is:", next_point_to_probe)
s1, s2 = next_point_to_probe.values()
# convert suggested coordinates to np array
Model_coord = np.array([[s1, s2]])
# find the index of the models that are closest to this point
distances, indices = nbrs.kneighbors(Model_coord)
# I order to reduce repeatedly sampling the same point, check if
# suggested point was sampled last and then check in ModelNums what the
# name/index of that model is, if was recently sampled then take the
# second nearest point.
if LastModel == np.asscalar(indices[0][0]):
TempModelNum = np.asscalar(indices[0][1])
ActualLocation = ModelEmbedding[np.asscalar(indices[0][1])]
Distance=distances[0][1]
else:
TempModelNum = np.asscalar(indices[0][0])
ActualLocation = ModelEmbedding[np.asscalar(indices[0][0])]
Distance = distances[0][0]
if (Distance <10 or Iter<init_points):
# Hack: because space is continuous but analysis approaches aren't,
# we penalize points that are far (>10 distance in model space)
# from any actual analysis approaches by assigning them the value of
# the worst performing approach in the burn-in
LastModel = TempModelNum
BadIters = np.append(BadIters,0)
# Call the objective function and evaluate the model/pipeline
if MultivariateUnivariate:
if ClassOrRegress == 'Regression':
target = objective_func_reg(TempModelNum, Y, model_config['Sparsities_Run'],
model_config['Data_Run'], model_config['BCT_models'],
model_config['BCT_Run'], model_config['CommunityIDs'],
model_config['MainNoNanPrediction'],
model_config['GSRNoNanPrediction'])
elif ClassOrRegress == 'Classification':
target = objective_func_class(model_config['Data_Run'], TempModelNum, Y, model_config['files_id'],
model_config['data_root'], model_config['output_path'])
if verbose:
print("Next Iteration")
print(Iter)
# print("Model Num %d " % TempModelNum)
print('Print indices: %d %d' % (indices[0][0], indices[0][1]))
print(Distance)
print("Target Function: %.4f" % (target))
print(' ')
np.random.seed(Iter)
# This is a hack. Add a very small random number to the coordinates so
# that even if the model has been previously selected the GP thinks its
# a different point, since this was causing it to crash
TempLoc1 = ActualLocation[0] + (np.random.random_sample(1) - 0.5)/10
TempLoc2 = ActualLocation[1] + (np.random.random_sample(1) - 0.5)/10
pbar.update(1)
else:
newlist = sorted(optimizer.res, key=lambda k: k['target'])
target = newlist[0]['target']
LastModel = -1
if verbose:
print("Next Iteration")
print(Iter)
# print("Model Num %d " % TempModelNum)
# print('Print indices: %d %d' % (indices[0][0], indices[0][1]))
print(Distance)
print("Target Function Default Bad: %.4f" % (target))
print(' ')
BadIters = np.append(BadIters,1)
TempLoc1 = Model_coord[0][0]
TempLoc2 = Model_coord[0][1]
n_iter = n_iter+1
Iter = Iter+1
# Update the GP data with the new coordinates and model performance
register_sample = {'b1': TempLoc1, 'b2': TempLoc2}
optimizer.register(params=register_sample, target=target)
pbar.close()
return BadIters
def plot_bo_estimated_space(kappa, BadIter, optimizer, pbounds, ModelEmbedding,
PredictedAcc, kernel, output_path, ClassOrRegression):
x = np.linspace(pbounds['b1'][0] - 10, pbounds['b1'][1] + 10, 500).reshape(
-1, 1)
y = np.linspace(pbounds['b2'][0] - 10, pbounds['b2'][1] + 10, 500).reshape(
-1, 1)
gp = GaussianProcessRegressor(kernel=kernel, normalize_y=True,
n_restarts_optimizer=10)
x_temp = np.array([[res["params"]["b1"]] for res in optimizer.res])
y_temp = np.array([[res["params"]["b2"]] for res in optimizer.res])
z_temp = np.array([res["target"] for res in optimizer.res])
x_obs=x_temp[BadIter==0]
y_obs=y_temp[BadIter==0]
z_obs=z_temp[BadIter==0]
NumSamplesToInclude=x_obs.shape[0]
x1x2 = np.array(list(product(x, y)))
X0p, X1p = x1x2[:, 0].reshape(500, 500), x1x2[:, 1].reshape(500, 500)
mu, sigma, gp = posterior(gp, x_obs[0:NumSamplesToInclude],
y_obs[0:NumSamplesToInclude],
z_obs[0:NumSamplesToInclude], x1x2)
Zmu = np.reshape(mu, (500, 500))
Zsigma = np.reshape(sigma, (500, 500))
conf0 = np.array(mu - 2 * sigma).reshape(500, 500)
conf1 = np.array(mu + 2 * sigma).reshape(500, 500)
X0p, X1p = np.meshgrid(x, y, indexing='ij')
font_dict_title = {'fontsize': 25}
font_dict_label = {'fontsize': 15}
font_dict_label3 = {'fontsize': 15}
vmax = Zmu.max()
vmin = Zmu.min()
cm = ['coolwarm', 'seismic']
fig, (ax1,ax2) = plt.subplots(1,2,figsize=(16,8))
ax = ax1
pcm = ax.pcolormesh(X0p, X1p, Zmu, vmax=vmax, vmin=vmin, cmap=cm[0],
rasterized=True)
if ClassOrRegression == 'Regression':
ax.set_xlim(-50, 50)
ax.set_ylim(-50, 50)
ax.set_aspect('equal', 'box')
ax = ax2
if ClassOrRegression == 'Regression':
pcm = ax.scatter(ModelEmbedding[0:PredictedAcc.shape[0],0],
ModelEmbedding[0:PredictedAcc.shape[0],1],
c=PredictedAcc*10, vmax=vmax*10, vmin=vmin*10,
cmap=cm[0], rasterized=True)
else:
pcm = ax.scatter(ModelEmbedding[0:PredictedAcc.shape[0],0],
ModelEmbedding[0:PredictedAcc.shape[0],1],
c=PredictedAcc, vmax=vmax, vmin=vmin,
cmap=cm[0], rasterized=True)
ax.set_aspect('equal', 'box')
fig.tight_layout()
if ClassOrRegression == 'Regression':
ax.set_xlim(-50, 50)
ax.set_ylim(-50, 50)
fig.subplots_adjust(right=0.8)
cbar_ax = fig.add_axes([0.825, 0.35, 0.02, 0.3])
fig.colorbar(pcm, cax=cbar_ax)
fig.savefig(str(output_path / f'BOptAndTrueK{kappa}.png'), dpi=300)
fig.savefig(str(output_path / f'BOptAndTrueK{kappa}.svg'), format='svg', dpi=300)
return x_obs, y_obs, z_obs, x, y, gp, vmax, vmin
def plot_bo_evolution(kappa, x_obs, y_obs, z_obs, x, y, gp, vmax, vmin,
ModelEmbedding, PredictedAcc, output_path, ClassOrRegression):
fig, axs = plt.subplots(5, 3, figsize=(12,18))
n_samples = [5, 10, 20, 30, 50]
cm = ['coolwarm', 'seismic']
# Make sure that predictions for Regression analysis are on the correct
# scale
if ClassOrRegression == 'Regression':
PredictedAcc = PredictedAcc * 10
for idx, NumSamplesToInclude in enumerate(n_samples):
x1x2 = np.array(list(product(x, y)))
X0p, X1p = x1x2[:, 0].reshape(500, 500), x1x2[:, 1].reshape(500, 500)
mu, sigma, gp = posterior(gp, x_obs[0:NumSamplesToInclude],
y_obs[0:NumSamplesToInclude],
z_obs[0:NumSamplesToInclude], x1x2)
muModEmb, sigmaModEmb, gpModEmb = posteriorOnlyModels(gp,
x_obs[0:NumSamplesToInclude],
y_obs[0:NumSamplesToInclude],
z_obs[0:NumSamplesToInclude],
ModelEmbedding)
Zmu = np.reshape(mu, (500, 500))
Zsigma = np.reshape(sigma, (500, 500))
conf0 = np.array(mu - 2 * sigma).reshape(500, 500)
conf1 = np.array(mu + 2 * sigma).reshape(500, 500)
X0p, X1p = np.meshgrid(x, y, indexing='ij')
ax = axs[idx, 0]
pcm = ax.pcolormesh(X0p, X1p, Zmu, vmax=vmax, vmin=vmin,
cmap=cm[0],rasterized=True)
ax.set_aspect('equal', 'box')
if ClassOrRegression == 'Regression':
ax.set_xlim(-50, 50)
ax.set_ylim(-50, 50)
ax = axs[idx,1]
pcm = ax.pcolormesh(X0p, X1p, Zsigma,cmap=cm[1],rasterized=True)#,vmax=vmax,vmin=vmin)
ax.set_title("Iterations: %i" % (NumSamplesToInclude), fontsize=15,
fontweight="bold")
ax.set_aspect('equal', 'box')
if ClassOrRegression == 'Regression':
ax.set_xlim(-50, 50)
ax.set_ylim(-50, 50)
ax = axs[idx,2]
# For visualisation purposes
if ClassOrRegression == 'Regression':
ax.set_xlim(-2.55, -2.25)
ax.set_ylim(-2.55, -2.25)
muModEmb = muModEmb * 10
pcm=ax.scatter(muModEmb[PredictedAcc!=PredictedAcc.min()],
PredictedAcc[PredictedAcc!=PredictedAcc.min()],
marker='.', c='gray')
if ClassOrRegression == 'Regression':
ax.set_xlim(PredictedAcc.max(), PredictedAcc.min())
ax.set_ylim(PredictedAcc.max(), PredictedAcc.min())
elif ClassOrRegression == 'Classification':
ax.set_xlim(PredictedAcc.min(), PredictedAcc.max())
ax.set_ylim(PredictedAcc.min(), PredictedAcc.max())
ax.set_aspect('equal', 'box')
fig.savefig(str(output_path / f'BOptEvolutionK{kappa}.svg'),format='svg',dpi=300)
corr = spearmanr(muModEmb,PredictedAcc)
return corr
def analysis_space(BCT_Num, BCT_models, x, KeptYeoIDs):
if BCT_Num == 'local efficiency':
ss = BCT_models[BCT_Num](x,1)
elif BCT_Num == 'modularity (louvain)':
ss, _ = BCT_models[BCT_Num](x, seed=2)
elif BCT_Num== 'modularity (probtune)':
ss, _ = BCT_models[BCT_Num](x, seed=2)
elif BCT_Num == 'participation coefficient':
ss = BCT_models[BCT_Num](x, KeptYeoIDs)
elif BCT_Num == 'module degree z-score':
ss = BCT_models[BCT_Num](x, KeptYeoIDs)
elif BCT_Num == 'pagerank centrality':
ss = BCT_models[BCT_Num](x, 0.85)
elif BCT_Num == 'diversity coefficient':
ss, _ = BCT_models[BCT_Num](x, KeptYeoIDs)
elif BCT_Num == 'gateway degree':
ss, _ = BCT_models[BCT_Num](x, KeptYeoIDs)
elif BCT_Num == 'k-core centrality':
ss, _ = BCT_models[BCT_Num](x)
else:
ss = BCT_models[BCT_Num](x)
return ss
def plot_bo_repetions(ModelEmbedding, PredictedAcc, BestModelGPSpaceModIndex,
BestModelEmpiricalModIndex, BestModelEmpirical,
ModelActualAccuracyCorrelation, output_path, ClassOrRegression):
# displaying results of 20 iterations
if ClassOrRegression == 'Regression':
PredictedAcc = PredictedAcc * 10
BestModelEmpirical = BestModelEmpirical * 10
fig8 = plt.figure(constrained_layout=False,figsize=(18,6))
gs1 = fig8.add_gridspec(nrows=6, ncols=18)
ax1 = fig8.add_subplot(gs1[:,0:6])
ax1.set_title('Optima GP regression: 20 iterations',fontsize=15,
fontweight="bold")
ax1.scatter(ModelEmbedding[0:PredictedAcc.shape[0],0],
ModelEmbedding[0:PredictedAcc.shape[0],1],
c=PredictedAcc,cmap='coolwarm',alpha=0.2,s=120)#vmax=vmax,vmin=vmin,
ax1.scatter(ModelEmbedding[BestModelGPSpaceModIndex.astype(int)][:,0],
ModelEmbedding[BestModelGPSpaceModIndex.astype(int)][:,1],s=120,c='black')
if ClassOrRegression == 'Regression':
ax1.set_xlim(-50, 50)
ax1.set_ylim(-50, 50)
ax2 = fig8.add_subplot(gs1[:,7:13])
ax2.set_title('Empirical optima: 20 iterations',fontsize=15,fontweight="bold")
ax2.scatter(ModelEmbedding[0:PredictedAcc.shape[0],0],
ModelEmbedding[0:PredictedAcc.shape[0],1],
c=PredictedAcc,cmap='coolwarm',s=120,alpha=0.2)#vmax=vmax,vmin=vmin,
ax2.scatter(ModelEmbedding[BestModelEmpiricalModIndex.astype(int)][:,0],
ModelEmbedding[BestModelEmpiricalModIndex.astype(int)][:,1],
c='black', s=120)
if ClassOrRegression == 'Regression':
ax2.set_xlim(-50, 50)
ax2.set_ylim(-50, 50)
ax3 = fig8.add_subplot(gs1[:, 14:16])
ax3.violinplot([PredictedAcc, BestModelEmpirical])
ax3.set_xticks([1, 2])
ax3.set_xticklabels(['Accuracy \n of all points', 'Accuracy\n of optima'],
fontsize=9)
ax4 = fig8.add_subplot(gs1[:,17:18])
ax4.violinplot([ModelActualAccuracyCorrelation])
ax4.set_xticks([1])
ax4.set_xticklabels(['Correlation: \n est vs emp '],fontsize=9)
fig8.savefig(str(output_path / 'BOpt20Repeats.png'),dpi=300)
fig8.savefig(str(output_path / 'BOpt20Repeats.svg'),format="svg")
def load_abide_demographics(data_root):
# Load demographics.
abide_df = pd.read_csv(str(data_root / 'Phenotypic_V1_0b_preprocessed1_cleaned.csv'), header=0, index_col=3)
missing_subs = ['USM_0050493', 'KKI_0050800']
drop_idx = []
for sub in missing_subs:
sub_idx = abide_df[abide_df['FILE_ID'] == sub].index.tolist()
if sub_idx:
drop_idx.append(sub_idx[0])
abide_df = abide_df.drop(drop_idx)
return abide_df