forked from joaonmatos/feup-machine-learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdb_importer.py
199 lines (155 loc) · 4.94 KB
/
db_importer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import csv
import sys
import sqlite3
args = sys.argv
mode = args[1] if len(args) > 1 else None
if mode not in ["train", "test"]:
mode = "train"
def parse_int(data):
if data == "":
return None
else:
return int(data)
def parse_float(data):
if data == "":
return None
else:
return float(data)
def parse_string(data):
if data == "":
return None
else:
return data
def parse_date(data):
as_str = parse_string(data)
if as_str == None or len(as_str) != 6:
return None
return f"19{as_str[0:2]}-{as_str[2:4]}-{as_str[4:6]}"
def parse_row(types, row):
return [op(item) for op, item in zip(types, row)]
def parse_district(data):
types = [
parse_int,
parse_string,
parse_string,
parse_int,
parse_int,
parse_int,
parse_int,
parse_int,
parse_int,
parse_float,
parse_int,
parse_float,
parse_float,
parse_float,
parse_int,
parse_int
]
return [parse_row(types, row) for row in data]
def parse_account(data):
types = [
parse_int,
parse_int,
parse_string,
parse_date
]
return [parse_row(types, row) for row in data]
def parse_loan(data):
types = [
parse_int,
parse_int,
parse_date,
parse_int,
parse_int,
parse_int,
parse_int
]
return [parse_row(types, row) for row in data]
def parse_transaction(data):
types = [
parse_int,
parse_int,
parse_date,
parse_string,
parse_string,
parse_float,
parse_float,
parse_string,
parse_string,
parse_int
]
return [parse_row(types, row) for row in data]
def parse_client(data):
types = [
parse_int,
parse_date,
parse_int,
parse_string
]
return [parse_row(types, row) for row in data]
def parse_disposition(data):
types = [
parse_int,
parse_int,
parse_int,
parse_string
]
return [parse_row(types, row) for row in data]
def parse_card(data):
types = [
parse_int,
parse_int,
parse_string,
parse_date
]
return [parse_row(types, row) for row in data]
# Create database
connection = sqlite3.connect(f'database_{mode}.db')
with open("schema.sql") as schema:
sql = schema.read()
connection.executescript(sql)
with open("clean-data/district.csv", newline="") as district:
reader = csv.reader(district)
data = [rows for rows in reader]
parsed_data = parse_district(data[1:])
connection.executemany("""INSERT INTO districts(id, name, region, no_inhabitants, no_small_places, no_medium_places, no_large_places, no_very_large_places, no_cities,
ratio_urban_inhabitants, avg_salary, unemployment_95, unemployment_96, entrepreneur_ratio, crimes_95, crimes_96)
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)""", parsed_data)
with open("clean-data/account.csv", newline="") as account:
reader = csv.reader(account)
data = [rows for rows in reader]
parsed_data = parse_account(data[1:])
connection.executemany(
'INSERT INTO accounts(id, district_id, frequency, "date") VALUES (?, ?, ?, ?)', parsed_data)
with open("clean-data/loan_" + mode + ".csv", newline="") as loan:
reader = csv.reader(loan)
data = [rows for rows in reader]
parsed_data = parse_loan(data[1:])
connection.executemany("""INSERT INTO loans(id, account_id, "date", amount, duration, payments, status)
VALUES (?, ?, ?, ?, ?, ?, ?)""", parsed_data)
with open("clean-data/transaction_" + mode + ".csv", newline="") as transaction:
reader = csv.reader(transaction)
data = [rows for rows in reader]
parsed_data = parse_transaction(data[1:])
connection.executemany("""INSERT INTO transactions(id, account_id, "date", type, operation, amount, balance, k_symbol, bank, destination_account)
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)""", parsed_data)
with open("clean-data/client.csv", newline="") as client:
reader = csv.reader(client)
data = [rows for rows in reader]
parsed_data = parse_client(data[1:])
connection.executemany(
"INSERT INTO clients(id, birthday, district_id, gender) VALUES (?, ?, ?, ?)", parsed_data)
with open("clean-data/disposition.csv", newline="") as disposition:
reader = csv.reader(disposition)
data = [rows for rows in reader]
parsed_data = parse_disposition(data[1:])
connection.executemany(
"INSERT INTO dispositions(id, client_id, account_id, type) VALUES (?, ?, ?, ?)", parsed_data)
with open("clean-data/card_" + mode + ".csv", newline="") as card:
reader = csv.reader(card)
data = [rows for rows in reader]
parsed_data = parse_card(data[1:])
connection.executemany(
"INSERT INTO cards(id, disposition_id, type, issue_date) VALUES (?, ?, ?, ?)", parsed_data)
connection.commit()