-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstm.R
76 lines (61 loc) · 2.21 KB
/
stm.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# source("05-bert_matching.R")
#
# bert_merged <- bert_match("bert_merged", 0.5, ISCO3Code, job_post_line, JobDescription, similarity) |>
# group_by(job_post_line) |>
# slice_max(similarity, n = 1, with_ties = FALSE)
job_post_df <- pin_read(board, "job_post_translated") |>
mutate(line = row_number(), .before = 1)
ilo_stat_df <- pin_read(board, "ilo_stat_df") |>
mutate(line = row_number(), .before = 1)
bert_merged <- pin_read(board, "bert_merged") |>
mutate(ilo_line = row_number(), .before = 1) |>
pivot_longer(
- ilo_line,
names_to = "job_post_line",
names_transform = as.numeric,
values_to = "similarity"
) |>
filter(similarity >= .5) |> # filter before merge
ungroup() |>
left_join(ilo_stat_df, by = c("ilo_line" = "line")) |>
left_join(job_post_df, by = c("job_post_line" = "line")) |>
select(ISCO3Code, job_post_line, JobDescription, similarity)
cleaned_text_data <- bert_merged |>
ungroup() |>
group_by(ISCO3Code) |>
transmute(JobDescription, ISCO3Code, n = n()) |>
ungroup() |>
mutate(line = row_number()) %>%
unnest_tokens(word, JobDescription) %>%
select(line, ISCO3Code, word, n) |>
filter(!grepl('[0-9]', word)) %>% # remove numbers
filter(!str_detect(word, "[^a-zA-Z 0-9(),.'-=!?:’%&]")) |>
filter(nchar(word) > 1) %>%
anti_join(tidytext::get_stopwords(), by = "word") |>
drop_na()
sparse <- cleaned_text_data %>%
count(line, word) %>%
cast_sparse(line, word, n)
covariates <- cleaned_text_data |>
distinct(line, .keep_all = TRUE) |>
select(- word) |>
mutate(ISCO2Code = str_sub(ISCO3Code, end = 2)) |>
select(- ISCO3Code)
for (k in 2:20) {
message("Fitting topic model w ", crayon::blue(k), " topics started. ", crayon::magenta(str_c("(", Sys.time(), ")")))
tictoc::tic()
topic_model <- stm(sparse,
K = k,
prevalence = ~ ISCO2Code,
data = covariates,
verbose = FALSE,
max.em.its = 5,
init.type = "Spectral")
runtime <- capture.output(tictoc::toc())
board |>
pin_write(
x = list(topic_model, runtime),
type = "rds",
name = str_c("stm_", k)
)
}