-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathLagrangeDynamicEqDeriver.m
56 lines (37 loc) · 1.17 KB
/
LagrangeDynamicEqDeriver.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
function Eq = LagrangeDynamicEqDeriver(L, q, Dq)
% Author: Mansour Torabi
% Email: [email protected]
%%
syms t
N = length(q);
%% Calculation of L_q = r.L/r.q and L_Dq = r.L/r.Dq
L_q = sym(zeros(N,1));
L_Dq = sym(zeros(N,1));
for ii = 1:N
L_q(ii) = diff(L, q(ii));
L_Dq(ii) = diff(L, Dq(ii));
end
%% Calculation of L_Dq_dt = qd/dt( r_Dq )
L_Dq_dt = sym(zeros(N,1));
for ii = 1:N
for jj = 1:N
q_dst = [char(q(jj)), '(t)'];
Dq_dst = ['diff(', q_dst,',t)'];
L_Dq(ii) = subs(L_Dq(ii), {q(jj), Dq(jj)}, {str2sym(q_dst), str2sym(Dq_dst)});
end
L_Dq_fcn = symfun(L_Dq(ii), t);
L_Dq_dt(ii) = diff(L_Dq_fcn, t);
for jj = 1:N
q_orig = [char(q(jj)), '(t)'];
Dq_orig = ['diff(', q_orig,',t)'];
DDq_orig = ['diff(', q_orig,',t,t)'];
DDq_dst = ['DD',char(q(jj))];
L_Dq_dt(ii) = subs(L_Dq_dt(ii), {str2sym(q_orig), str2sym(Dq_orig), str2sym(DDq_orig)}, ...
{q(jj), Dq(jj), str2sym(DDq_dst)});
end
end
%% Lagrange's equations (Second kind)
Eq = sym(zeros(N,1));
for ii = 1:N
Eq(ii) = simplify(L_Dq_dt(ii) - L_q(ii)) ;
end