-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel.py
217 lines (179 loc) · 7.71 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import torch
import torch.nn as nn
import torch.nn.functional as F
from fastai.vision.all import *
from fastai.data.all import *
# dev = 'cuda:3'
# torch.cuda.set_device(dev)
dev = torch.cuda.current_device()
class AAE(nn.Module):
def __init__(
self,
input_size,
input_channels,
encoding_dims=128,
step_channels=16,
nonlinearity=nn.LeakyReLU(0.2),
classes=2,
gen_train=True
):
super(AAE, self).__init__()
self.gen_train = gen_train
self.count_acc = 1
self.classes = classes
self.pool = nn.AdaptiveAvgPool2d(1)
self.flatten = nn.Flatten()
self.dropout = nn.Dropout(p=0.2)#, inplace=True)
# self.linear = nn.Linear(self.encoder.out_channels[-1], 2, bias=True) #2 classes
self.linear = nn.Linear(encoding_dims, self.classes, bias=True) #8 classes
self.bn_lin = nn.BatchNorm1d(num_features=encoding_dims)
self.fc_crit1 = nn.Linear(encoding_dims*2, 64)
self.fc_crit2 = nn.Linear(64, 16)
self.fc_crit3 = nn.Linear(16, 1)
self.bn_crit1 = nn.BatchNorm1d(num_features=64)
self.bn_crit2 = nn.BatchNorm1d(num_features=16)
encoder = [
nn.Sequential(
nn.Conv2d(input_channels, step_channels, 5, 2, 2), nonlinearity
)
]
size = input_size // 2
channels = step_channels
while size > 1:
encoder.append(
nn.Sequential(
nn.Conv2d(channels, channels * 4, 5, 4, 2),
nn.BatchNorm2d(channels * 4),
nonlinearity,
)
)
channels *= 4
size = size // 4
self.encoder = nn.Sequential(*encoder)
self.encoder_fc = nn.Linear(
channels, encoding_dims
) # Can add a Tanh nonlinearity if training is unstable as noise prior is Gaussian
self.decoder_fc = nn.Linear(encoding_dims, step_channels)
decoder = []
size = 1
channels = step_channels
while size < input_size // 2:
decoder.append(
nn.Sequential(
nn.ConvTranspose2d(channels, channels * 4, 5, 4, 2, 3),
nn.BatchNorm2d(channels * 4),
nonlinearity,
)
)
channels *= 4
size *= 4
decoder.append(nn.ConvTranspose2d(channels, input_channels, 5, 2, 2, 1))
self.decoder = nn.Sequential(*decoder)
def latent_gan(self, zi: Tensor) -> Tensor:
mu = torch.mean(zi,dim=0).unsqueeze(0)
std = torch.std(zi,dim=0).unsqueeze(0)
# print(f'std shape: {std.shape}')
stat = torch.hstack((mu,std))
# print(f'stat shape: {stat.shape}')
x = self.fc_crit1(stat)
# print(x.grad)
# x = F.leaky_relu(self.bn_crit1(x),negative_slope=0.2)
x = F.leaky_relu(x,negative_slope=0.2)
x = self.fc_crit2(x)
# print(x.grad)
# x = F.leaky_relu(self.bn_crit2(x),negative_slope=0.2)
x = F.leaky_relu(x,negative_slope=0.2)
x = self.fc_crit3(x)
# print(x.grad)
x = F.sigmoid(x)
# print(x.grad)
return x
def forward(self, x):
"""Sequentially pass `x` trough model`s encoder, decoder and heads"""
self.input_image = x
features = self.encoder(x)
self.zi = F.relu(self.bn_lin(self.encoder_fc(
features.view(
-1, features.size(1) * features.size(2) * features.size(3)
)
)))
x = self.decoder_fc(self.zi)
self.decoder_output = self.decoder(x.view(-1, x.size(1), 1, 1))
self.gan_fake = self.latent_gan(self.zi)
z = torch.randn_like(self.zi)
self.gan_real = self.latent_gan(z)
# x = self.dropout(self.zi)
labels = self.linear(self.zi)
# labels = F.softmax(x)
return labels
def ae_loss_func(self, output, target):
delta = .5
huber = nn.HuberLoss(delta=delta)
self.recons_loss = huber(self.input_image, self.decoder_output)
bce = nn.BCEWithLogitsLoss()
classif_loss = bce(output, target)
return self.recons_loss + .001*classif_loss
def classif_loss_func(self, output, target):
delta = .5
huber = nn.HuberLoss(delta=delta)
self.recons_loss = huber(self.input_image, self.decoder_output)
bce = nn.BCEWithLogitsLoss()
self.classif_loss = bce(output, target)
# self.kld_loss = -0.5 * torch.sum(1 + self.log_var - self.mu ** 2 - self.log_var.exp())
adversarial_loss = nn.BCELoss()
if self.gen_train: #generator loss
# Measures generator's ability to fool the discriminator
valid = torch.ones_like(self.gan_fake, requires_grad=False).detach()
self.adv_loss = adversarial_loss(self.gan_fake, valid)
self.crit_loss = 0
else: #discriminator loss
# Measure discriminator's ability to classify real from generated samples
valid = torch.ones_like(self.gan_real, requires_grad=False).detach()
fake = torch.zeros_like(self.gan_fake, requires_grad=False).detach()
self.real_loss = adversarial_loss(self.gan_real, valid)
self.fake_loss = adversarial_loss(self.gan_fake, fake)
self.adv_loss = 0.6 * self.real_loss + 0.4 * self.fake_loss
self.crit_loss = self.adv_loss
return self.adv_loss
loss = 0.01*self.recons_loss + 0.24*self.adv_loss + 0.75*self.classif_loss
if self.count_acc % 16 == 0:
self.gen_train = False
else:
self.gen_train = True
self.count_acc += 1
return loss
def aae_loss_func(self, output, target):
adversarial_loss = nn.BCELoss()
delta = .5
huber = nn.HuberLoss(delta=delta)
self.recons_loss = huber(self.input_image, self.decoder_output)
# self.kld_loss = -0.5 * torch.sum(1 + self.log_var - self.mu ** 2 - self.log_var.exp())
if self.gen_train: #generator loss
# Measures generator's ability to fool the discriminator
valid = torch.ones_like(self.gan_fake, requires_grad=False).detach()
self.adv_loss = adversarial_loss(self.gan_fake, valid)
self.crit_loss = 0
# self.classif_loss = self.classif_loss_func(self.pred, classif_target)
# loss = 0.1 * self.adv_loss + 0.9 * self.recons_loss + self.classif_loss
else: #discriminator loss
# Measure discriminator's ability to classify real from generated samples
valid = torch.ones_like(self.gan_real, requires_grad=False).detach()
fake = torch.zeros_like(self.gan_fake, requires_grad=False).detach()
self.real_loss = adversarial_loss(self.gan_real, valid)
self.fake_loss = adversarial_loss(self.gan_fake, fake)
self.adv_loss = 0.6 * self.real_loss + 0.4 * self.fake_loss
self.crit_loss = self.adv_loss
# ce = nn.CrossEntropyLoss()
# self.classif_loss = ce(output, target)
bce = nn.BCEWithLogitsLoss()
self.classif_loss = bce(output, target)
# loss = self.adv_loss + .1*self.recons_loss + .4*self.classif_loss
loss = self.adv_loss + .1*self.recons_loss + .001*self.classif_loss
# print(f'Losses: {loss.shape, self.kld_loss.shape, self.recons_loss.shape, self.classif_loss.shape}')
if self.count_acc % 2 == 0:
self.gen_train = False
else:
self.gen_train = True
self.count_acc += 1
# print(f'count_acc: {self.count_acc, self.gen_train}')
return loss