-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathploter.py
47 lines (39 loc) · 2.01 KB
/
ploter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
# -*- coding:utf-8 -*-
import matplotlib.pyplot as plt
import pickle
class Ploter(object):
def __init__(self, performance_file):
self.performance_file = performance_file
self.performance = pickle.load(file=open(self.performance_file, "rb"))
self.epoch_index = []
self.success_rate = []
self.average_reward = []
self.average_wrong_disease = []
self.__prepare_data()
def __prepare_data(self, epoch_size = 50):
epoch_size = max(epoch_size, len(self.performance.keys()))
for epoch_index in range(0, epoch_size, 1):
self.epoch_index.append(epoch_index)
self.success_rate.append(self.performance[epoch_index]["success_rate"])
self.average_reward.append(self.performance[epoch_index]["average_reward"])
self.average_wrong_disease.append(self.performance[epoch_index]["average_wrong_disease"])
def plot(self, save_name):
size = 1499
plt.plot(self.epoch_index[0:size],self.success_rate[0:size], label="DQN Agent", linewidth=1)
plt.xlabel("Simulation Epoch")
plt.ylabel("Success Rate")
plt.title("Learning Curve")
plt.hlines(0.23,0,size,label="Rule Agent", linewidth=1, colors="purple")
plt.hlines(0.06,0,size,label="Random Agent", linewidth=1, colors="r")
plt.grid(True)
# plt.legend(loc="lower right")
plt.legend(loc='center right')
# plt.savefig(save_name,dpi=400)
plt.show()
if __name__ == "__main__":
file_name = "./src/dialogue_system/model/dqn/learning_rate/learning_rate_d4_e999_agent1_dqn1.p"
file_name = "./src/dialogue_system/data/dataset/label/result/learning_rate/learning_rate_d4_e_agent1_dqn1_T22_lr0.001_RFS44_RFF-22_RFNCY-1_RFIRS-1_mls0_gamma1.0_epsilon0.1_1499.p"
file_name = '/Users/qianlong/Desktop/acl/learning_rate_d4_e_agent1_dqn1_T22_lr0.001_RFS44_RFF-22_RFNCY-1_RFIRS-1_mls0_gamma1.0_epsilon0.1_RID8_1499.p'
save_name = file_name + ".png"
ploter = Ploter(file_name)
ploter.plot(save_name)