-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathtransformer.py
268 lines (247 loc) · 8.78 KB
/
transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import math
import comfy.latent_formats
import comfy.model_base
import comfy.model_management
import comfy.model_patcher
import comfy.sd
import comfy.supported_models_base
import comfy.utils
import torch
from ltx_video.models.autoencoders.vae_encode import get_vae_size_scale_factor
from .img2vid import encode_media_conditioning
from .model import LTXVSampling
from .nodes_registry import comfy_node
def get_normal_shift(
n_tokens: int,
min_tokens: int = 1024,
max_tokens: int = 4096,
min_shift: float = 0.95,
max_shift: float = 2.05,
) -> float:
m = (max_shift - min_shift) / (max_tokens - min_tokens)
b = min_shift - m * min_tokens
return m * n_tokens + b
@comfy_node(name="LTXVModelConfigurator")
class LTXVModelConfigurator:
@classmethod
def INPUT_TYPES(s):
PRESETS = [
"Custom",
"1216x704 | 41",
"1088x704 | 49",
"1056x640 | 57",
"992x608 | 65",
"896x608 | 73",
"896x544 | 81",
"832x544 | 89",
"800x512 | 97",
"768x512 | 97",
"800x480 | 105",
"736x480 | 113",
"704x480 | 121",
"704x448 | 129",
"672x448 | 137",
"640x416 | 153",
"672x384 | 161",
"640x384 | 169",
"608x384 | 177",
"576x384 | 185",
"608x352 | 193",
"576x352 | 201",
"544x352 | 209",
"512x352 | 225",
"512x352 | 233",
"544x320 | 241",
"512x320 | 249",
"512x320 | 257",
]
return {
"required": {
"model": ("MODEL",),
"vae": ("VAE",),
"preset": (
PRESETS,
{
"default": "Custom",
"tooltip": "Preset resolution and frame count. Custom allows manual input.",
},
),
"width": ("INT", {"default": 768, "min": 1, "max": 10000}),
"height": ("INT", {"default": 512, "min": 1, "max": 10000}),
"frames_number": (
"INT",
{
"default": 65,
"min": 9,
"max": 257,
"step": 8,
"tooltip": "Must be equal to N * 8 + 1",
},
),
"frame_rate": ("INT", {"default": 25, "min": 1, "max": 60}),
"batch": ("INT", {"default": 1, "min": 1, "max": 60}),
"mixed_precision": ("BOOLEAN", {"default": True}),
"img_compression": (
"INT",
{
"default": 29,
"min": 0,
"max": 100,
"tooltip": "Amount of compression to apply on conditioning image.",
},
),
},
"optional": {
"conditioning": (
"IMAGE",
{"tooltip": "Optional conditioning image or video."},
),
"initial_latent": (
"LATENT",
{
"tooltip": "initial latent that is combined with conditioning if given"
},
),
},
}
RETURN_TYPES = ("MODEL", "LATENT", "FLOAT")
RETURN_NAMES = ("model", "latent", "sigma_shift")
FUNCTION = "configure_sizes"
CATEGORY = "lightricks/LTXV"
TITLE = "LTXV Model Configurator"
OUTPUT_NODE = False
def latent_shape_and_frame_rate(
self, vae, batch, height, width, frames_number, frame_rate
):
video_scale_factor, vae_scale_factor, _ = get_vae_size_scale_factor(
vae.first_stage_model
)
video_scale_factor = video_scale_factor if frames_number > 1 else 1
latent_height = height // vae_scale_factor
latent_width = width // vae_scale_factor
latent_channels = vae.first_stage_model.config.latent_channels
latent_num_frames = math.floor(frames_number / video_scale_factor) + 1
latent_frame_rate = frame_rate / video_scale_factor
latent_shape = [
batch,
latent_channels,
latent_num_frames,
latent_height,
latent_width,
]
return latent_shape, latent_frame_rate
def configure_sizes(
self,
model,
vae,
preset,
width,
height,
frames_number,
frame_rate,
batch,
mixed_precision,
img_compression,
conditioning=None,
initial_latent=None,
):
load_device = comfy.model_management.get_torch_device()
if preset != "Custom":
preset = preset.split("|")
width, height = map(int, preset[0].strip().split("x"))
frames_number = int(preset[1].strip())
latent_shape, latent_frame_rate = self.latent_shape_and_frame_rate(
vae, batch, height, width, frames_number, frame_rate
)
mask_shape = [
latent_shape[0],
1,
latent_shape[2],
latent_shape[3],
latent_shape[4],
]
conditioning_mask = torch.zeros(mask_shape, device=load_device)
initial_latent = (
None
if initial_latent is None
else initial_latent["samples"].to(load_device)
)
guiding_latent = None
if conditioning is not None:
latent = encode_media_conditioning(
conditioning,
vae,
width,
height,
frames_number,
image_compression=img_compression,
initial_latent=initial_latent,
)
conditioning_mask[:, :, 0] = 1.0
guiding_latent = latent[:, :, :1, ...]
else:
latent = torch.zeros(latent_shape, dtype=torch.float32, device=load_device)
if initial_latent is not None:
latent[:, :, : initial_latent.shape[2], ...] = initial_latent
_, vae_scale_factor, _ = get_vae_size_scale_factor(vae.first_stage_model)
patcher = model.clone()
patcher.add_object_patch("diffusion_model.conditioning_mask", conditioning_mask)
patcher.add_object_patch("diffusion_model.latent_frame_rate", latent_frame_rate)
patcher.add_object_patch("diffusion_model.vae_scale_factor", vae_scale_factor)
patcher.add_object_patch(
"model_sampling", LTXVSampling(conditioning_mask, guiding_latent)
)
patcher.model_options.setdefault("transformer_options", {})[
"mixed_precision"
] = mixed_precision
num_latent_patches = latent_shape[2] * latent_shape[3] * latent_shape[4]
return (patcher, {"samples": latent}, get_normal_shift(num_latent_patches))
@comfy_node(name="LTXVShiftSigmas")
class LTXVShiftSigmas:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"sigmas": ("SIGMAS",),
"sigma_shift": ("FLOAT", {"default": 1.820833333}),
"stretch": (
"BOOLEAN",
{
"default": True,
"tooltip": "Stretch the sigmas to be in the range [terminal, 1].",
},
),
"terminal": (
"FLOAT",
{
"default": 0.1,
"min": 0.0,
"max": 0.99,
"step": 0.01,
"tooltip": "The terminal value of the sigmas after stretching.",
},
),
}
}
RETURN_TYPES = ("SIGMAS",)
CATEGORY = "lightricks/LTXV"
FUNCTION = "shift_sigmas"
DESCRIPTION = (
"Transforms sigmas to values where the model can focus on denoising high noise."
)
def shift_sigmas(self, sigmas, sigma_shift, stretch, terminal):
power = 1
sigmas = torch.where(
sigmas != 0,
math.exp(sigma_shift) / (math.exp(sigma_shift) + (1 / sigmas - 1) ** power),
0,
)
# Stretch sigmas so that its final value matches the given terminal value.
if stretch:
non_zero_mask = sigmas != 0
non_zero_sigmas = sigmas[non_zero_mask]
one_minus_z = 1.0 - non_zero_sigmas
scale_factor = one_minus_z[-1] / (1.0 - terminal)
stretched = 1.0 - (one_minus_z / scale_factor)
sigmas[non_zero_mask] = stretched
return (sigmas,)