-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcore_pipeline.py
854 lines (658 loc) · 31 KB
/
core_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
import numpy as np
import pathlib
import html2text
import os
import shutil
from google_sheet_ops import *
from karmametric import run_metric_pipeline
from dash_aggregations import run_dash_aggregations_pipeline
from postgres_ops import run_pg_pandas_transfer, get_pg_engine
from google_analytics_ops import run_ga_pipeline
from url_parsing import run_url_table_update
from sql_pipeline import run_postgres_pipeline
from utils import timed, print_and_log, get_config_field, get_valid_users, get_valid_posts, \
get_valid_comments, get_valid_votes, get_valid_views, get_collection
BASE_PATH = get_config_field('PATHS','base')
ENV = get_config_field('ENV', 'env')
def get_collection_cleaned(coll_name, conn,
limit=None, votes_views_start_date=None): # (name of collection, MongoDB object, read/write arg bundle) -> dataframe
"""
Downloads, *processes* and returns single collection from MongoDB.
Processing retains only some columns, fills in missing values, and casts datatypes.
Processing is performed using a custom function for each collection.
Collection must be one of ['post', 'comments', 'users', 'votes', 'views' (lwevents with post-view filter)
Post-Views by default pulls last three years
Optionally writes to file based on io_config argument bundle.
Returns a dataframe.
"""
selected_columns = {
'posts': [
'af',
'_id',
'userId',
'title',
'postedAt',
# 'contents', #not using at present, is large.
'baseScore',
'afBaseScore',
'score',
'viewCount',
'clickCount',
'commentCount',
'createdAt',
'frontpageDate',
'curatedDate',
'draft',
'url',
'slug',
'legacy',
'question',
'userAgent',
'canonicalCollectionSlug',
# 'moderationGuidelinesHtmlBody',
# 'deleted', #there's only a single post with this flag, remove so as make sampling posts not fail
'isEvent',
'website',
'authorIsUnreviewed',
'status',
'rejected'
],
'comments': [
'_id',
'af',
'userId',
'postId',
'postedAt',
'createdAt',
'baseScore',
'afBaseScore',
'score',
'deleted',
'parentCommentId',
'legacy',
'answer',
'parentAnswerId',
'userAgent',
# 'contents'
],
'users': [
'_id',
'username',
'displayName',
'createdAt',
'postCount',
'commentCount',
'frontpagePostCount',
'karma',
'deleted',
'banned',
'email',
'legacy',
'afKarma',
'shortformFeedId',
'signUpReCaptchaRating',
'reviewedByUserId',
'hideWalledGardenUI',
'walledGardenInvite'
],
'votes': [
'_id',
'afPower',
'collectionName',
'documentId',
'power',
'userId',
'voteType',
'votedAt',
'cancelled',
'isUnvote',
'authorIds'
],
'views': [
'_id',
'userId',
'documentId',
'createdAt',
],
'logins': [
'_id',
'userId',
'properties',
'createdAt',
'schema'
],
'tags': [
'createdAt',
'_id',
'name',
'userId',
'wikiGrade',
'description',
'slug',
'oldSlugs',
'deleted',
'postCount',
'description_latest',
'adminOnly',
'core',
'suggestedAsFilter',
'defaultOrder',
],
'tagrels': [
'createdAt',
'_id',
'tagId',
'postId',
'userId',
'baseScore',
'score',
'inactive',
'voteCount',
'afBaseScore',
'deleted'
],
'sequences': [
'_id',
'userId',
'title',
'createdAt',
'draft',
'isDeleted',
'hidden',
'schemaVersion',
'contents'
]
}
cleaning_functions = {
'users': clean_raw_users,
'posts': clean_raw_posts,
'votes': clean_raw_votes,
'views': clean_raw_views,
'comments': clean_raw_comments,
'logins': clean_raw_logins,
'tags': clean_raw_tags,
'tagrels': clean_raw_tagrels,
'sequences': clean_raw_sequences
}
if not votes_views_start_date:
votes_views_start_date = np.datetime64('today', 'D') - np.timedelta64(365 * 5, 'D')
if type(votes_views_start_date) != str:
votes_views_start_date = str(votes_views_start_date)
query_filters = {
'logins': " WHERE name = 'login'",
'votes': " WHERE \"votedAt\" >= '{}'".format(votes_views_start_date),
'views': " WHERE name = 'post-view' AND \"createdAt\" >= '{}'".format(votes_views_start_date)
}
def name_check(coll_name):
# ugly, but how else to do it?
if coll_name in ('views', 'logins'):
return 'LWEvents'
elif coll_name == 'tagrels':
return 'TagRels'
else:
return coll_name.capitalize()
raw_collection_df = get_collection(
conn=conn,
table_name=name_check(coll_name),
projection=selected_columns[coll_name],
query_filter=query_filters.get(coll_name),
limit=limit
)
# when number of items pulled is small, some fields aren't present in any of the items returned, which causes errors when you try to manipulate that column.
for col in selected_columns[coll_name]:
if col not in raw_collection_df.columns:
raw_collection_df.loc[:, col] = np.nan
cleaned_collection_df = cleaning_functions[coll_name](raw_collection_df)
return cleaned_collection_df
@timed
def get_collections_cleaned(coll_names=('comments', 'views', 'votes', 'posts', 'users', 'tags', 'tagrels', 'sequences'), limit=None):
"""
For all collections in argument, downloads and cleans them.
Returns a dict of dataframes.
"""
engine = get_pg_engine(get_config_field('POSTGRESDBSOURCE', 'db'))
with engine.begin() as conn:
colls_dict = {name: get_collection_cleaned(name, conn, limit) for name in coll_names}
engine.dispose()
return colls_dict
def write_collection(coll_name, coll_df, date_str): # (string, df, arg_bundle) -> None
# hardcoded to write to db directory. wonderful hardcoding
# this function really needs some cleanin'
print_and_log('Writing {} to disk.'.format(coll_name))
directory = BASE_PATH + '{folder}/{date}'.format(folder='processed', date=date_str) # vestigial folder structure
pathlib.Path(directory).mkdir(exist_ok=True)
coll_df.to_csv(directory + '/{}.csv'.format(coll_name), index=False)
print_and_log('Writing {} to disk completed.\n'.format(coll_name))
return None
def write_collections(dfs, date_str): # dict[{string: df}] -> None
"""Writes all dataframes in dataframe dictionary to file."""
[write_collection(coll_name, coll_df, date_str) for coll_name, coll_df in dfs.items()]
return None
def get_list_of_dates():
"""Searches folder path for list of folders by dates with data downloads
Returns a list of folder/directory names.
"""
directory = BASE_PATH + '{folder}'.format(folder='processed')
date_folders = [x[0] for x in os.walk(directory)][1:]
date_folders.sort(reverse=True)
return date_folders
@timed
def clean_up_old_files(days_to_keep=1):
"""Function for deleting old file downloads. Accepts """
date_folders = get_list_of_dates()
return [shutil.rmtree(folder) for folder in date_folders[days_to_keep:]]
@timed
def load_from_file(date_str, coll_names=('votes', 'views', 'comments', 'posts', 'users', 'tags', 'tagrels', 'sequences')):
"""Loads database collections from csvs to dataframes, ensures datetimes load correctly."""
def read_csv(coll_name):
if coll_name in read_dtypes_arg:
dtypes = read_dtypes_arg[coll_name]
else:
dtypes = None
print_and_log('Reading {}'.format(coll_name))
df = pd.read_csv(complete_path_to_file(coll_name), dtype=dtypes)
# read in all datetime types correctly
for dt_col in ['postedAt', 'createdAt', 'votedAt', 'startTime', 'endTime',
'earliest_comment', 'most_recent_comment', 'earliest_vote', 'most_recent_vote',
'most_recent_post', 'earliest_post', 'most_recent_activity', 'earliest_activity',
'true_earliest', 'curatedAt', 'earliest_view', 'birth'
]:
if dt_col in df.columns:
df.loc[:, dt_col] = pd.to_datetime(df[dt_col])
return df
def complete_path_to_file(coll_name):
return BASE_PATH + '{folder}/{date}/{coll_name}.csv'.format(folder='processed', date=date_str, coll_name=coll_name)
if date_str == 'most_recent':
date_str = get_list_of_dates()[0][-8:]
read_dtypes_arg = {
'users': None,
'posts': None,
'comments': None,
'votes': {'collectionName': 'category', 'voteType': 'category', 'afPower': 'int8', 'power': 'int8'},
'views': None,
'sequences': None,
'tags': None,
'tagrels': None
}
print_and_log("Files to be loaded:")
[print(complete_path_to_file(coll_name)) for coll_name in coll_names]
return {coll_name: read_csv(coll_name) for coll_name in coll_names}
def htmlBody2plaintext(html_series, ignore_links=False):
h = html2text.HTML2Text()
h.ignore_links = ignore_links
return html_series.apply(lambda x: h.handle(x))
def remove_mjx(df, preserve_original=False):
"""Function use to remove stray mjx in content bodies, currently not used."""
if preserve_original:
df['body_original'] = df['body'].copy()
df.loc[:, 'body'] = df['body'].fillna('')
ix = df['body'].str.contains('.mjx')
df.loc[ix, 'body'] = htmlBody2plaintext(df.loc[ix, 'htmlBody'])
return df
def convertContents2Body(df):
index = df['contents'].str['html'].notnull() & df['body'].isnull()
df.loc[index, 'body'] = htmlBody2plaintext(df.loc[index, 'contents'].str['html'])
return df
def clean_raw_posts(posts):
"""
Takes raw dataframe of posts collections and fixes datatypes and similar.
Casting important for memory optimization.
"""
# ensure proper datetime encoding
posts.loc[:, 'postedAt'] = pd.to_datetime(posts['postedAt'])
posts.loc[:, 'createdAt'] = pd.to_datetime(posts['createdAt'])
# fill in missing values and cast to appropriate types
for col in ['viewCount', 'clickCount', 'commentCount']:
posts.loc[:, col] = posts.loc[:, col].fillna(0).astype(int)
for col in ['draft', 'legacy', 'af', 'question', 'isEvent', 'rejected']:
posts.loc[:, col] = posts.loc[:, col].fillna(False).astype(bool)
return posts
def clean_raw_comments(comments):
comments.loc[:, 'postedAt'] = pd.to_datetime(comments['postedAt'])
comments.loc[:, 'createdAt'] = pd.to_datetime(comments['createdAt'])
for col in ['deleted', 'legacy', 'af', 'answer']:
comments.loc[:, col] = comments.loc[:, col].fillna(False).astype(bool)
return comments
def clean_raw_users(users):
"""
Takes raw dataframe of users collections and returns subset of columns + processes columns.
Casting is important for memory optimization.
"""
users.loc[:, 'createdAt'] = pd.to_datetime(users['createdAt'])
users.loc[:, 'afKarma'] = users['afKarma'].fillna(0)
for col in ['postCount', 'commentCount', 'frontpagePostCount', 'karma']:
users.loc[:, col] = users.loc[:, col].fillna(0).astype(int)
for col in ['deleted', 'legacy', 'banned', 'hideWalledGardenUI', 'walledGardenInvite']:
users.loc[:, col] = users.loc[:, col].fillna(False).astype(bool)
return users
def clean_raw_votes(votes):
"""
Takes raw dataframe of votes collections and returns subset of columns + processes columns.
Casting here *very* important for memory optimization. Use categories and small integer types.
"""
votes.loc[:, 'cancelled'] = votes['cancelled'].fillna(False).astype(bool)
votes.loc[:, 'isUnvote'] = votes['isUnvote'].fillna(False).astype(bool)
votes.loc[:, 'afPower'] = votes['afPower'].fillna(0).astype('int8')
votes.loc[:, 'collectionName'] = votes['collectionName'].astype('category')
votes.loc[:, 'power'] = votes['power'].astype('int8')
votes.loc[:, 'voteType'] = votes['voteType'].astype('category')
votes.loc[:, 'votedAt'] = pd.to_datetime(votes['votedAt'])
votes.loc[:, 'userId'] = votes['userId'].astype(str)
votes = votes.drop(columns=['_id']) # unnecessary and takes up 200Mb
return votes
def clean_raw_views(views):
"""Takes raw dataframe of views collection and returns filtered/processed dataframe."""
views.loc[:, 'createdAt'] = pd.to_datetime(views['createdAt'])
# views.loc[:, 'name'] = views['name'].astype('category') #only ever contains "post-view"
# views.loc[:, 'legacy'] = views['legacy'].fillna(False).astype(bool) #never use it, but want to remember it's there
views = views.drop(columns=['_id']) # unnecessary and takes up 200Mb
return views
def clean_raw_logins(logins_df):
"""Takes raw dataframe of logins collection and returns filtered/processed dataframe."""
logins_parsed = logins_df
logins_parsed.loc[:, 'createdAt'] = pd.to_datetime(logins_parsed['createdAt'])
logins_parsed.loc[:, 'type'] = logins_parsed['properties'].str['type']
return logins_parsed
def clean_raw_tags(tags_df):
tags_parsed = tags_df
tags_parsed.loc[:, 'defaultOrder'] = tags_parsed.loc[:,'defaultOrder'].fillna(0)
for col in ['deleted', 'adminOnly', 'core', 'suggestedAsFilter']:
tags_parsed.loc[:, col] = tags_parsed.loc[:, col].fillna(False).astype(bool)
return tags_parsed
def clean_raw_tagrels(tagrels_df):
tagrels_parsed = tagrels_df
for col in ['deleted', 'inactive']:
tagrels_parsed.loc[:, col] = tagrels_parsed.loc[:, col].fillna(False).astype(bool)
for col in ['score', 'baseScore']:
tagrels_parsed[col] = tagrels_parsed[col].astype(int)
return tagrels_parsed
def clean_raw_sequences(sequences_df):
sequences_parsed = sequences_df
for col in ['draft', 'isDeleted', 'hidden']:
sequences_parsed.loc[:, col] = sequences_parsed.loc[:, col].fillna(False).astype(bool)
return sequences_parsed
def calculate_vote_stats_for_content(colls_dfs):
"""Accepts dataframe on votes, aggregates to document level and returns stats.
Returns stats about kinds of votes placed (small/big,up/down) and when last vote was made.
"""
votes_df = get_valid_votes(colls_dfs)
votes_df['voteType'] = votes_df['voteType'].astype(str)
vote_type_stats = votes_df.groupby(['documentId', 'voteType']).size().unstack(level='voteType').fillna(0).astype(
int)
for col in ['smallUpvote', 'smallDownvote', 'bigUpvote', 'bigDownvote']:
if col not in vote_type_stats.columns:
vote_type_stats[col] = 0
vote_type_stats = vote_type_stats[['smallUpvote', 'smallDownvote', 'bigUpvote', 'bigDownvote']]
vote_type_stats['num_votes'] = vote_type_stats.sum(axis=1)
vote_type_stats['percent_downvotes'] = (
vote_type_stats[['smallDownvote', 'bigDownvote']].sum(axis=1) / vote_type_stats['num_votes']).round(2)
vote_type_stats['percent_bigvotes'] = (
vote_type_stats[['bigUpvote', 'bigDownvote']].sum(axis=1) / vote_type_stats['num_votes']).round(2)
vote_stats = vote_type_stats.merge(votes_df.groupby('documentId')['votedAt'].max().to_frame('most_recent_vote'),
left_index=True, right_index=True)
return vote_stats
def calculate_vote_stats_for_users(colls_dfs):
"""Accepts dataframe on votes, aggregates to users and returns stats for users.
Returns stats about kinds of votes placed (small/big,up/down) and when last and earliest votes were made.
"""
votes_df = get_valid_votes(colls_dfs)
votes_df['voteType'] = votes_df['voteType'].astype(str)
vote_date_stats = votes_df.groupby('userId').apply(lambda x: pd.Series(data={ 'most_recent_vote': x['votedAt'].max(),
'earliest_vote': x['votedAt'].min()}))
vote_type_stats = votes_df.groupby(['userId', 'voteType']).size().unstack(level='voteType').fillna(0).astype(int)
for col in ['smallUpvote', 'smallDownvote', 'bigUpvote', 'bigDownvote']:
if col not in vote_type_stats.columns:
vote_type_stats[col] = 0
vote_type_stats = vote_type_stats[['smallUpvote', 'smallDownvote', 'bigUpvote', 'bigDownvote']]
vote_type_stats['num_votes'] = vote_type_stats.sum(axis=1)
vote_type_stats['percent_downvotes'] = (
vote_type_stats[['smallDownvote', 'bigDownvote']].sum(axis=1) / vote_type_stats['num_votes']).round(2)
vote_type_stats['percent_bigvotes'] = (
vote_type_stats[['bigUpvote', 'bigDownvote']].sum(axis=1) / vote_type_stats['num_votes']).round(2)
vote_stats = vote_date_stats.merge(vote_type_stats, left_index=True, right_index=True)
return vote_stats
def calc_user_view_stats(colls_dfs):
views_df = get_valid_views(colls_dfs)
view_date_stats = views_df.groupby('userId')['createdAt'].agg(
num_views='count',
most_recent_view='max',
earliest_view='min'
)
view_post_stats = views_df.groupby('userId')['documentId'].nunique().to_frame('num_distinct_posts_viewed')
views_df['date'] = views_df['createdAt'].dt.date
views_last_30 = views_df[views_df['createdAt'] >= views_df['createdAt'].max() - pd.Timedelta(30 - 1, unit='d')]
view_presence_stats = views_last_30.groupby('userId')['date'].nunique().to_frame('num_days_present_last_30_days')
view_stats = (
view_date_stats
.merge(view_post_stats, left_index=True, right_index=True, how='outer')
.merge(view_presence_stats, left_index=True, right_index=True, how='outer')
)
return view_stats
def calc_user_comment_stats(colls_dfs): # dict of df -> df
"""Calculates aggregates statistics over a user's comments."""
comments = get_valid_comments(colls_dfs)
comment_stats = (comments
.groupby('userId')['postedAt']
.agg(
total_comments='size',
earliest_comment= 'min',
most_recent_comment= 'max'
)
)
return comment_stats
def calc_user_post_stats(colls_dfs): # dict of df -> df
"""Calculates aggregate statistics over a user's posts."""
posts = get_valid_posts(colls_dfs, required_upvotes=None)
# dfp['frontpageDate'] = dfp['frontpageDate'].replace(0, np.nan) # this should *not* be necessary. Remember to track it upstream.
posts['frontpaged'] = posts['frontpageDate'].notnull()
postsByUser = posts[~posts['draft']].groupby('userId')
post_date_stats = postsByUser['postedAt'].agg(
total_posts='size',
earliest_post='min',
most_recent_post='max'
)
post_stats = post_date_stats # used to be more stats here, but they weren't worth it
return post_stats
def calc_user_recent_activity(colls_dfs, present_date):
posts = get_valid_posts(colls_dfs) # mostly useful to exclude drafts
comments = get_valid_comments(colls_dfs)
votes = get_valid_votes(colls_dfs)
views = get_valid_views(colls_dfs)
def activity_last_n(n, date):
# could be made to contain another function called repeatedly, but it's fine. It works.
n_days_ago = date - pd.to_timedelta(n, 'days')
comments_ln = comments[(comments['postedAt'] > n_days_ago)].groupby('userId').size().to_frame(
'num_comments_last_{}_days'.format(n))
posts_ln = posts[(posts['postedAt'] > n_days_ago)].groupby('userId').size().to_frame(
'num_posts_last_{}_days'.format(n))
votes_ln = votes[(votes['votedAt'] > n_days_ago)].groupby('userId').size().to_frame(
'num_votes_last_{}_days'.format(n))
views_ln = views[(views['createdAt'] > n_days_ago)].groupby('userId').size().to_frame(
'num_views_last_{}_days'.format(n))
distinct_posts_viewed_ln = views[(views['createdAt'] > n_days_ago)].groupby('userId')[
'documentId'].nunique().to_frame('num_distinct_posts_viewed_last_{}_days'.format(n))
ln_stats = (
posts_ln
.merge(comments_ln, left_index=True, right_index=True, how='outer')
.merge(votes_ln, left_index=True, right_index=True, how='outer')
.merge(views_ln, left_index=True, right_index=True, how='outer')
.merge(distinct_posts_viewed_ln, left_index=True, right_index=True, how='outer')
)
return ln_stats
recent_activity = (activity_last_n(30, present_date).merge(activity_last_n(180, present_date),
left_index=True, right_index=True, how='outer')
).fillna(0).astype(int)
return recent_activity
def enrich_posts(colls_dfs):
posts = colls_dfs['posts'] # don't want to exclude drafts via filtering
comments = get_valid_comments(colls_dfs)
views = get_valid_views(colls_dfs)
users = get_valid_users(colls_dfs)
# comment stats
comment_stats = comments.groupby('postId').apply(lambda x: pd.Series(data={
'num_comments_rederived': x['_id'].nunique(),
'most_recent_comment': x['postedAt'].max()
}))
# vote stats for post
vote_stats = calculate_vote_stats_for_content(colls_dfs)
# view stats for post
view_date_stats = views.groupby('documentId').apply(lambda x: pd.Series(data={
'most_recent_view_logged': x['createdAt'].max(),
'viewCountLogged': x.shape[0]
}))
view_distinct_viewers = views.groupby('documentId')['userId'].nunique().to_frame('num_distinct_viewers')
view_stats = view_date_stats.merge(view_distinct_viewers, left_index=True, right_index=True, how='left')
posts = (posts
.merge(comment_stats, left_on='_id', right_index=True, how='left')
.merge(vote_stats, left_on='_id', right_index=True, how='left')
.merge(view_stats, left_on='_id', right_index=True, how='left')
)
# recent activity stats
recent_activity_cols = ['most_recent_vote', 'most_recent_view_logged', 'most_recent_comment']
for col in recent_activity_cols:
posts[col] = pd.to_datetime(posts[col])
posts['most_recent_activity'] = posts[recent_activity_cols].max(axis=1)
# further column additions
# dfp['frontpageDate'] = dfp['frontpageDate'].replace(0, np.nan) #shouldn't be necessary, track upstream
posts['frontpaged'] = posts['frontpageDate'].notnull()
posts['gw'] = posts['userAgent'].astype(str).str.contains('drakma', case=False).fillna(False)
posts = users.set_index('_id')[['username', 'displayName']].merge(posts, left_index=True, right_on='userId',
how='right') # add username to posts cols
return posts
def enrich_comments(colls_dfs): # dict(df) -> df
"""Add extra data to comments dataframe."""
users = colls_dfs['users']
comments = colls_dfs['comments']
vote_stats = calculate_vote_stats_for_content(colls_dfs)
comments = comments.merge(vote_stats, left_on='_id', right_index=True, how='left')
comments['top_level'] = comments['parentCommentId'].isnull()
comments['gw'] = comments['userAgent'].astype(str).str.contains('drakma', case=False)
comments = users.set_index('_id')[['username', 'displayName']].merge(comments, left_index=True,
right_on='userId') # add username to comments collection
return comments
def enrich_users(colls_dfs, date_str):
"""Takes in many dataframes and return one super-enriched users dataframe."""
users = colls_dfs['users']
date = pd.Timestamp(date_str).tz_localize('UTC')
post_stats = calc_user_post_stats(colls_dfs)
comment_stats = calc_user_comment_stats(colls_dfs)
vote_stats = calculate_vote_stats_for_users(colls_dfs)
view_stats = calc_user_view_stats(colls_dfs)
recent_activity = calc_user_recent_activity(colls_dfs, date)
users = (users
.merge(post_stats, left_on='_id', right_index=True, how='left')
.merge(comment_stats, left_on='_id', right_index=True, how='left')
.merge(vote_stats, left_on='_id', right_index=True, how='left')
.merge(view_stats, left_on='_id', right_index=True, how='left')
.merge(recent_activity, left_on='_id', right_index=True, how='left')
)
# something weird changed here where the min function was no longer working when nans were present (just returned nan),
# but this only applies across columns (axis=1), but worked correctly over rows (axis=0), so hacky fix is transpose, get minimum, transpose back. Ugly, but it works.
users['earliest_activity'] = pd.to_datetime(users[['earliest_post', 'earliest_comment', 'earliest_vote', 'earliest_view']].T.min( axis=0).T)
users['true_earliest'] = pd.to_datetime(users[['earliest_activity', 'createdAt']].T.min(axis=0).T)
users['most_recent_activity'] = users[['most_recent_post', 'most_recent_comment', 'most_recent_vote', 'most_recent_view', 'createdAt']].T.max( axis=0).T
users['days_since_active'] = np.nan
users.loc[users['most_recent_activity'].notnull(), 'days_since_active'] = ((date - users.loc[users[ 'most_recent_activity'].notnull(), 'most_recent_activity']).dt.total_seconds() / ( 86400)).round(1)
non_nan_columns = ['karma', 'afKarma', 'postCount', 'commentCount',
'frontpagePostCount', 'total_posts', 'total_comments', 'smallUpvote', 'smallDownvote',
'bigUpvote', 'bigDownvote', 'num_votes', 'num_views', 'num_distinct_posts_viewed',
'num_days_present_last_30_days', 'num_posts_last_30_days', 'num_comments_last_30_days', 'num_votes_last_30_days',
'num_views_last_30_days', 'num_distinct_posts_viewed_last_30_days', 'num_posts_last_180_days',
'num_comments_last_180_days', 'num_votes_last_180_days', 'num_views_last_180_days',
'num_distinct_posts_viewed_last_180_days',
'days_since_active']
users.loc[:, non_nan_columns] = users.loc[:, non_nan_columns].fillna(0)
users['num_days_present_last_30_days'] = users['num_days_present_last_30_days'].fillna(0)
return users
def enrich_tagrels(colls_dfs):
posts = colls_dfs['posts']
users = colls_dfs['users']
tags = colls_dfs['tags']
tagrels = colls_dfs['tagrels']
tagrels = (tagrels
.merge(tags.set_index('_id')[['name']], left_on='tagId', right_index=True)
.merge(posts.set_index('_id')[['title', 'userId', 'baseScore']], left_on='postId', right_index=True, suffixes=['', '_post'], how='left')
.merge(users.set_index('_id')[['displayName']], left_on='userId_post', right_index=True)
.rename({'displayName': 'author'}, axis=1)
)
tagrels.loc[:,'voteCount'] = tagrels.loc[:,'voteCount'].fillna(0).astype(int)
tagrels.loc[:,'afBaseScore'] = tagrels.loc[:,'afBaseScore'].fillna(0).astype(int)
tagrels.loc[:,'baseScore_post'] = tagrels.loc[:,'baseScore_post'].fillna(0).astype(int)
return tagrels
@timed
def enrich_collections(colls_dfs,
date_str,
coll_names=('comments', 'views', 'votes', 'posts', 'users', 'tags', 'tagrels', 'sequences'),
): # (dict[str:df], str, list[str]) -> dict[str:df]
"""Single function for collectively enriching all collection dataframes.
Input: dictionary of basic-parsed collection dataframes.
Output: dictionary of enriched (fully processed) collection dataframe.
"""
enriched_dfs = {}
if 'users' in coll_names:
enriched_dfs['users'] = enrich_users(colls_dfs, date_str=date_str)
if 'posts' in coll_names:
enriched_dfs['posts'] = enrich_posts(colls_dfs)
if 'comments' in coll_names:
enriched_dfs['comments'] = enrich_comments(colls_dfs)
if 'votes' in coll_names:
enriched_dfs['votes'] = colls_dfs['votes']
if 'views' in coll_names:
enriched_dfs['views'] = colls_dfs['views']
if 'tags' in coll_names:
enriched_dfs['tags'] = colls_dfs['tags']
if 'tagrels' in coll_names:
enriched_dfs['tagrels'] = enrich_tagrels(colls_dfs)
if 'sequences' in coll_names:
enriched_dfs['sequences'] = colls_dfs['sequences']
return enriched_dfs
@timed
def run_core_pipeline(date_str, from_file=False, clean_up=True, dash=True, gsheets=True,
metrics=True, postgres=True, tags=True, ga=True, urls=True,
postgres_pipeline=True, limit=None):
# ##1. LOAD DATA
if from_file:
dfs_enriched = load_from_file(date_str)
else:
dfs_cleaned = get_collections_cleaned(limit=limit)
today = dfs_cleaned['views']['createdAt'].max().strftime('%Y%m%d') # treat max date in collections as "today" in case of load from file from older date
# ##2. PREPARE DATA
dfs_enriched = enrich_collections(dfs_cleaned, date_str=today)
# ##3. WRITE OUT ENRICHED COLLECTIONS
write_collections(dfs_enriched, date_str=today)
# ##2 METRIC STUFF - PLOTS AND SHEETS
if metrics:
run_metric_pipeline(dfs_enriched, date_str, online=True, sheets=True, plots=True)
# ##3. GENERATE TIMESERIES FOR DASH
if dash:
run_dash_aggregations_pipeline(dfs_enriched, date_str)
# ##4. PLOT GRAPHS TO PLOTLY DASHBOARD
if gsheets:
create_and_update_all_sheets(dfs_enriched, spreadsheet_name=get_config_field('GSHEETS', 'spreadsheet_name'))
# ##5. LOAD DATA FILES TO POSTGRES DB
if postgres:
run_pg_pandas_transfer(dfs_enriched)
# ##6. GOOGLE ANALYTICS PIPELINE
if ga:
run_ga_pipeline()
# ##7. URLS TABLE UPDATE
if urls:
run_url_table_update(dfs_enriched)
# ##9. RUN THE POSTGRES INTERNAL PIPELINE
if postgres_pipeline:
run_postgres_pipeline()
# ##9. CLEAN UP OLD FILES TO SAVE SPACE
if clean_up:
clean_up_old_files(days_to_keep=2)
return None
if __name__ == '__main__':
run_core_pipeline(
date_str=pd.datetime.today().strftime('%Y%m%d'),
dash=True,
gsheets=True,
metrics=True,
postgres=True,
ga=True,
urls=True,
clean_up=True
)