Skip to content

Latest commit

 

History

History
74 lines (58 loc) · 13.4 KB

File metadata and controls

74 lines (58 loc) · 13.4 KB

Positional Encoding in GANs

Positional Encoding as Spatial Inductive Bias in GANs

Abstract

SinGAN shows impressive capability in learning internal patch distribution despite its limited effective receptive field. We are interested in knowing how such a translation-invariant convolutional generator could capture the global structure with just a spatially i.i.d. input. In this work, taking SinGAN and StyleGAN2 as examples, we show that such capability, to a large extent, is brought by the implicit positional encoding when using zero padding in the generators. Such positional encoding is indispensable for generating images with high fidelity. The same phenomenon is observed in other generative architectures such as DCGAN and PGGAN. We further show that zero padding leads to an unbalanced spatial bias with a vague relation between locations. To offer a better spatial inductive bias, we investigate alternative positional encodings and analyze their effects. Based on a more flexible positional encoding explicitly, we propose a new multi-scale training strategy and demonstrate its effectiveness in the state-of-the-art unconditional generator StyleGAN2. Besides, the explicit spatial inductive bias substantially improve SinGAN for more versatile image manipulation.

Results and models for MS-PIE

896x896 results generated from a 256 generator using MS-PIE
Models Reference in Paper Scales FID50k P&R10k Config Download
stylegan2_c2_256_baseline Tab.5 config-a 256 5.56 75.92/51.24 config model
stylegan2_c2_512_baseline Tab.5 config-b 512 4.91 75.65/54.58 config model
ms-pie_stylegan2_c2_config-c Tab.5 config-c 256, 384, 512 3.35 73.84/55.77 config model
ms-pie_stylegan2_c2_config-d Tab.5 config-d 256, 384, 512 3.50 73.28/56.16 config model
ms-pie_stylegan2_c2_config-e Tab.5 config-e 256, 384, 512 3.15 74.13/56.88 config model
ms-pie_stylegan2_c2_config-f Tab.5 config-f 256, 384, 512 2.93 73.51/57.32 config model
ms-pie_stylegan2_c1_config-g Tab.5 config-g 256, 384, 512 3.40 73.05/56.45 config model
ms-pie_stylegan2_c2_config-h Tab.5 config-h 256, 384, 512 4.01 72.81/54.35 config model
ms-pie_stylegan2_c2_config-i Tab.5 config-i 256, 384, 512 3.76 73.26/54.71 config model
ms-pie_stylegan2_c2_config-j Tab.5 config-j 256, 384, 512 4.23 73.11/54.63 config model
ms-pie_stylegan2_c2_config-k Tab.5 config-k 256, 384, 512 4.17 73.05/51.07 config model
ms-pie_stylegan2_c2_config-f higher-resolution 256, 512, 896 4.10 72.21/50.29 config model
ms-pie_stylegan2_c1_config-f higher-resolution 256, 512, 1024 6.24 71.79/49.92 config model

Note that we report the FID and P&R metric (FFHQ dataset) in the largest scale.

Results and Models for SinGAN

Positional Encoding in SinGAN
Model Data Num Scales Config Download
SinGAN + no pad balloons.png 8 config ckpt | pkl
SinGAN + no pad + no bn in disc balloons.png 8 config ckpt | pkl
SinGAN + no pad + no bn in disc fish.jpg 10 config ckpt | pkl
SinGAN + CSG fish.jpg 10 config ckpt | pkl
SinGAN + CSG bohemian.png 10 config ckpt | pkl
SinGAN + SPE-dim4 fish.jpg 10 config ckpt | pkl
SinGAN + SPE-dim4 bohemian.png 10 config ckpt | pkl
SinGAN + SPE-dim8 bohemian.png 10 config ckpt | pkl

Citation

@article{xu2020positional,
  title={Positional Encoding as Spatial Inductive Bias in GANs},
  author={Xu, Rui and Wang, Xintao and Chen, Kai and Zhou, Bolei and Loy, Chen Change},
  journal={arXiv preprint arXiv:2012.05217},
  year={2020},
  url={https://openaccess.thecvf.com/content/CVPR2021/html/Xu_Positional_Encoding_As_Spatial_Inductive_Bias_in_GANs_CVPR_2021_paper.html},
}