-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_flimbuilder_model.py
85 lines (72 loc) · 3.79 KB
/
run_flimbuilder_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import random
import time
from model import flim, arch, data, metrics, util
import numpy as np
from torch.utils.data import DataLoader
import argparse
import torch
import os
def get_metrics(dataset_folder, output_folder, file_list, scale_factor=1.0, bb_size_range=None):
print("Computing metrics...")
metricas = dict()
results_folder = output_folder
label_folder = dataset_folder+"/label/"
metricas = metrics.FLIMMetrics()
metricas.evaluate_detection_results(results_folder, label_folder,file_list=util.readFileList(file_list), bb_scale=scale_factor, bbs_size_range=bb_size_range)
metricas.print_results()
metricas.save_pr_curve(output_folder+"/"+"pr_curve.png")
if __name__ == "__main__":
try:
ap = argparse.ArgumentParser()
except:
ap.print_help()
sys.exit(0)
ap.add_argument("-i", "--input_dataset", required=True, help="path to the folder with <orig> <label> <markers> folders and split files")
ap.add_argument("-l", "--file_list", required=True, help="path to the file-list file")
ap.add_argument("-a", "--arch_file", required=True, help="path to the architecture file <arch.json>")
ap.add_argument("-m", "--trained_model_folder", required=True, help="path to the FLIMBuilder trained model folder")
ap.add_argument("-d", "--device", required=False, default="cpu", help="device where the model will run (e.g., 'cpu' or 'cuda:0')")
ap.add_argument("-s", "--scale_factor", required=False, default="1.0", help="Factor to scale the bounding boxes")
ap.add_argument("-r", "--bb_size_range", required=False, default=None, help="Size range for the bounding_box (E.g. [1200, 30000])")
ap.add_argument("-f", "--filter_saliency_component", action="store_true", help="Apply size filter in the saliency map directly")
ap.add_argument("-o", "--output_folder", required=True, help="path to the folder to save the results")
args = vars(ap.parse_args())
print("Starting and validating parameters...")
dataset_folder = args["input_dataset"]
output_folder = args["output_folder"]
arch_file = args["arch_file"]
device = args["device"]
scale_factor = float(args["scale_factor"])
bb_size_range_s = args["bb_size_range"]
pre_trained_weights = args["trained_model_folder"]
file_list = args["file_list"]
if(bb_size_range_s != None):
min_size = int(bb_size_range_s.split(",")[0][1:])
max_size = int(bb_size_range_s.split(",")[1][:-1])
bb_size_range = [min_size, max_size]
else:
bb_size_range = None
filter_by_size = args["filter_saliency_component"]
orig_folder = dataset_folder+"/orig/"
marker_folder = dataset_folder+"/markers/"
label_folder = dataset_folder+"/label/"
orig_ext = ".png"
label_ext = ".png"
if not os.path.exists(output_folder):
os.makedirs(output_folder)
print("Loading architecture...")
architecture = arch.FLIMArchitecture(arch_file)
assert architecture is not None, "Could not load architecture from "+arch_file
model = flim.FLIMModel(architecture, adaptation_function="robust_weights", device=device, filter_by_size=filter_by_size)
assert model is not None, "Failed to create model from architecture"
print("Loading weights...")
model.load_ift_flim(pre_trained_weights)
#Run network
print("Running validation...")
dataset = data.FLIMData(orig_folder, images_list=file_list, orig_ext=orig_ext,
transform=data.transforms.Compose([data.ToTensor()]))
start = time.time()
model.forward(dataset, output_folder)
stop = time.time()
print('Forward pass in:', stop - start, 'seconds')
get_metrics(dataset_folder, output_folder, file_list=file_list, scale_factor=scale_factor, bb_size_range=bb_size_range)