-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
110 lines (91 loc) · 3.81 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import torch
from torch.utils.data import DataLoader
import torch.nn as nn
import torchaudio
#import wandb
from my_utils import set_seed, get_sampler, count_parameters, transform_tr
from my_utils import preprocess_data as my_collate_fn
from dataset import TrainDataset
from models import CRNN, AttnMech, ApplyAttn, FullModel
from train_val import train_epoch, validation
if __name__ == '__main__':
BATCH_SIZE = 256
NUM_EPOCHS = 1
N_MELS = 40
IN_SIZE = 40
HIDDEN_SIZE = 64
KERNEL_SIZE = (20, 5)
STRIDE = (8, 2)
GRU_NUM_LAYERS = 2
NUM_DIRS = 2
NUM_CLASSES = 2
set_seed(21)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print('Working on', device)
### Dataset
my_dataset = TrainDataset(csv_path='csv_labels_sheila.csv', transform=transform_tr)
print('All train+val samples:', len(my_dataset))
train_len = 57500
val_len = 64721 - train_len
train_set, val_set = torch.utils.data.random_split(my_dataset, [train_len, val_len])
# Samplers for oversampling
train_sampler = get_sampler(train_set.dataset.csv['label'][train_set.indices].values)
val_sampler = get_sampler(val_set.dataset.csv['label'][val_set.indices].values)
# Loaders
train_loader = DataLoader(train_set, batch_size=BATCH_SIZE,
shuffle=False, collate_fn=my_collate_fn,
sampler=train_sampler, drop_last=False,
num_workers=1, pin_memory=True)
val_loader = DataLoader(val_set, batch_size=BATCH_SIZE,
shuffle=False, collate_fn=my_collate_fn,
sampler=val_sampler, drop_last=False,
num_workers=1, pin_memory=True)
### Create melspecs
# With augmentations
melspec_train = nn.Sequential(
torchaudio.transforms.MelSpectrogram(sample_rate=16000, n_mels=N_MELS),
torchaudio.transforms.FrequencyMasking(freq_mask_param=15),
torchaudio.transforms.TimeMasking(time_mask_param=35),
).to(device)
# W/o augmentations
melspec_val = torchaudio.transforms.MelSpectrogram(
sample_rate=16000,
n_mels=N_MELS
).to(device)
### Create model
CRNN_model = CRNN(IN_SIZE, HIDDEN_SIZE, KERNEL_SIZE, STRIDE, GRU_NUM_LAYERS)
attn_layer = AttnMech(HIDDEN_SIZE * NUM_DIRS)
apply_attn = ApplyAttn(HIDDEN_SIZE * 2, NUM_CLASSES)
### Download ready models
# checkpoint = torch.load('crnn_final', map_location=device)
# CRNN_model.load_state_dict(checkpoint['model_state_dict'])
# checkpoint = torch.load('attn_final', map_location=device)
# attn_layer.load_state_dict(checkpoint['model_state_dict'])
# checkpoint = torch.load('apply_attn_final', map_location=device)
# apply_attn.load_state_dict(checkpoint['model_state_dict'])
full_model = FullModel(CRNN_model, attn_layer, apply_attn)
print(full_model.to(device))
print(count_parameters(full_model))
#wandb.init()
#wandb.watch(full_model)
### Create optimizer
opt = torch.optim.Adam(full_model.parameters(), weight_decay=1e-5)
### Train_val loop
for n in range(NUM_EPOCHS):
train_epoch(full_model, opt, train_loader, melspec_train,
GRU_NUM_LAYERS, HIDDEN_SIZE, device=device)
validation(full_model, val_loader, melspec_val,
GRU_NUM_LAYERS, HIDDEN_SIZE, device=device)
print('END OF EPOCH', n)
### Save model
torch.save({
'model_state_dict': CRNN_model.state_dict(),
}, 'crnn_final')
torch.save({
'model_state_dict': attn_layer.state_dict(),
}, 'attn_1')
torch.save({
'model_state_dict': apply_attn.state_dict(),
}, 'apply_attn_1')
validation(full_model, val_loader, melspec_val,
GRU_NUM_LAYERS, HIDDEN_SIZE, device=device, find_trsh=True)