-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathedge_generator.py
38 lines (31 loc) · 1.14 KB
/
edge_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
"""
Author: Min Seok Lee and Wooseok Shin
TRACER: Extreme Attention Guided Salient Object Tracing Network
git repo: https://github.com/Karel911/TRACER
"""
import os
import cv2
import numpy as np
from tqdm import tqdm
# Append custom datasets below list
dataset_list = ['DUTS', 'DUT-O', 'HKU-IS', 'ECSSD', 'PASCAL-S']
def edge_generator(dataset):
if dataset == 'DUTS':
mask_path = os.path.join('data/', dataset, 'Train/masks/')
else:
mask_path = os.path.join('data/', dataset, 'Test/masks/')
save_path = os.path.join('data/', dataset, 'Train/edges/')
os.makedirs(save_path, exist_ok=True)
mask_list = os.listdir(mask_path)
for i, img_name in tqdm(enumerate(mask_list)):
mask = cv2.imread(mask_path + img_name)
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
mask = np.int64(mask > 128)
[gy, gx] = np.gradient(mask)
tmp_edge = gy * gy + gx * gx
tmp_edge[tmp_edge != 0] = 1
bound = np.uint8(tmp_edge * 255)
cv2.imwrite(os.path.join(save_path, f'{img_name}'), bound)
if __name__ == '__main__':
for dataset in dataset_list:
edge_generator(dataset)