-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathclustering_functions.py
840 lines (649 loc) · 29.8 KB
/
clustering_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
# -*- coding: utf-8 -*-
"""
Created on Mon Jul 25 18:38:05 2022
@author: mehak
"""
import pandas as pd
import os
import numpy as np
import matplotlib.pyplot as plt
import pickle
from datetime import date
from sklearn import preprocessing
from sklearn.model_selection import GroupShuffleSplit
from sklearn import metrics
from sklearn.metrics import confusion_matrix
from sklearn.cluster import KMeans
from sklearn.cluster import SpectralClustering
from sklearn.cluster import DBSCAN
from sklearn import preprocessing
from sklearn.preprocessing import StandardScaler, normalize, MinMaxScaler
from sklearn.metrics import silhouette_score
# Dimensionality reduction
from sklearn.manifold import TSNE
from sklearn.decomposition import PCA
import plotly.express as px
import matplotlib.pyplot as plt
import mpl_toolkits.mplot3d.axes3d as p3
import utils
import sys
import warnings
warnings.filterwarnings("ignore")
import time
import shutil
import seaborn as sns
from sklearn.ensemble import RandomForestClassifier
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
import math
import matplotlib
import holoviews as hv
from holoviews import opts, dim
from bokeh.plotting import show, output_file
from holoviews.plotting import Plot
import numpy as np
import xgboost as xgb
from xgboost.sklearn import XGBClassifier
from sklearn import metrics
from sklearn.metrics import confusion_matrix, f1_score, accuracy_score
def generate_colormap(N):
arr = np.arange(N)/N
N_up = int(math.ceil(N/7)*7)
arr.resize(N_up)
arr = arr.reshape(7,N_up//7).T.reshape(-1)
ret = matplotlib.cm.hsv(arr)
n = ret[:,3].size
a = n//2
b = n-a
for i in range(3):
ret[0:n//2,i] *= np.arange(0.2,1,0.8/a)
ret[n//2:,3] *= np.arange(1,0.1,-0.9/b)
# print(ret)
return ret
def chord_diagram(matrix, name):
hv.extension('bokeh')
hv.output(size = 200)
n = len(matrix)
data = hv.Dataset((list(np.arange(n)), list(np.arange(n)), matrix),
['source', 'target'], 'value').dframe()
Plot.fig_rcparams={'axes.labelsize':40, 'axes.titlesize':40}
color_map = ListedColormap(generate_colormap(n))
chord = hv.Chord(data.astype('int32')).opts(fontsize = {'labels' : 20})
chord.opts(
node_color='index', edge_color='source', labels ='index',
cmap= color_map, edge_cmap= color_map, width =500, height=500)
chord.opts(label_text_font_size='15pt')
output_file(name)
show(hv.render(chord))
def norm_to_none(x,name,ranges):
c1,c2,c3,c4 = ranges[name][:4]
log_variables = ['Creatinine', 'Bilirubin_direct', 'Bilirubin_total', 'Glucose', 'Lactate', 'WBC', 'TroponinI']
#reverse normalization of normal range
y = x*(c4-c3) + c3
if(name in log_variables):
y = 10**(y) - 1
return y
def get_ranges(constraint_file_name):
#Set the constraints for each variable
ranges = {}
#The min and max values of these variables are log transformed
log_variables = ['Creatinine', 'Bilirubin_direct', 'Bilirubin_total', 'Glucose', 'Lactate', 'WBC', 'TroponinI']
with open(constraint_file_name, 'r') as f:
for x in f:
line = x.replace('\n', '').split(', ')
if line[0] in log_variables:
ranges[line[0]] = [np.log10(float(i) +1) for i in line[1:]]
else:
ranges[line[0]] = [float(i) for i in line[1:]]
return ranges
ranges = get_ranges('constraints_wo_calcium.txt')
def clustering_stats(clustering_labels_kmeans12, dfX):
dfX['kmeans'] = clustering_labels_kmeans12
df_mean = (dfX.loc[dfX.kmeans!=-1, :]
.groupby('kmeans').mean())
df_median = (dfX.loc[dfX.kmeans!=-1, :]
.groupby('kmeans').median())
df_std = (dfX.loc[dfX.kmeans!=-1, :]
.groupby('kmeans').std())
columns = list(dfX.columns)
variables = [s[:-2] for s in columns if '-0' in s]
print(variables)
dfX_stats = pd.DataFrame()
for var in variables:
if var in ['Calcium']:
continue
elif var in ['SOFA', 'SIRS']:
dfX_stats[var + '-median'] = df_median[[var + '-' + str(i) for i in range(6)]].median(axis = 1)
dfX_stats[var + '-std'] = df_std[[var + '-' + str(i) for i in range(6)]].std(axis = 1)
dfX_stats[var + '-mean'] = df_mean[[var + '-' + str(i) for i in range(6)]].mean(axis = 1)
else:
dfX_stats[var + '-median'] = norm_to_none( df_median[[var + '-' + str(i) for i in range(6)]].median(axis = 1), var, ranges)
dfX_stats[var + '-std'] = norm_to_none(df_std[[var + '-' + str(i) for i in range(6)]].std(axis = 1), var, ranges)
dfX_stats[var + '-mean'] = norm_to_none(df_mean[[var + '-' + str(i) for i in range(6)]].mean(axis = 1), var, ranges)
return dfX_stats
def sepsis_concentration(clustering_labels_kmeans12, dfy, dfPatID):
pats = pd.DataFrame(columns = ['SepsisLabel', 'patid'])
pats['SepsisLabel'] = dfy
pats['patid'] = dfPatID.values
p = pats.groupby('patid').max()
zip_iterator = zip(p.index, p['SepsisLabel'].values)
sepsisp = dict(zip_iterator)
sepsis_conc12 = []
for c in range(12):
total = len(clustering_labels_kmeans12[clustering_labels_kmeans12 == c])
sepsis_label = dfy[clustering_labels_kmeans12 == c]
sepsis = len(sepsis_label[sepsis_label['SepsisLabel'] == 1])
sepsis_conc12.append(np.round(sepsis*100/total, 2))
print("Cluster {} : {} sepsis concentration, {}, {} ".format(c, (sepsis/total)*100, sepsis, total))
sepsis_prev12 = []
print( " \n")
for c in range(12):
pats_in_cluster = np.unique(dfPatID[clustering_labels_kmeans12 == c])
sepsis_label = np.array([sepsisp[pat] for pat in pats_in_cluster])
total = len(sepsis_label)
sepsis = len(sepsis_label[sepsis_label == 1])
sepsis_prev12.append(np.round(sepsis*100/total, 2))
print("Cluster {} : {} sepsis prevalence".format(c, (sepsis/total)*100))
sepsis = pd.DataFrame( columns = ['Sepsis Concentration', 'Sepsis Prevalence'])
sepsis['Sepsis Concentration'] = sepsis_conc12
sepsis['Sepsis Prevalence'] = sepsis_prev12
return sepsis
def most_varying_feat( clustering_labels_kmeans12, dfX_feat, name):
scaler = MinMaxScaler()
df_scaled = pd.DataFrame(scaler.fit_transform(dfX_feat), columns = dfX_feat.columns)
df_scaled['kmeans'] = clustering_labels_kmeans12
df_mean = (df_scaled.loc[df_scaled.kmeans!=-1, :]
.groupby('kmeans').mean())
results = pd.DataFrame(columns=['Variable', 'Var'])
for column in df_mean.columns[1:]:
results.loc[len(results), :] = [column, np.var(df_mean[column])]
selected_columns = list(results.sort_values(
'Var', ascending=False,
).head(10).Variable.values) + ['kmeans']
tidy = df_scaled[selected_columns].melt(id_vars='kmeans')
sns.set(rc = {'figure.figsize':(15,10)})
sns.barplot(x='kmeans', y='value', hue='variable', data=tidy)
plt.title('kmeans 12', fontsize = 20)
plt.savefig('./' + name, dpi=300)
def randomForest_feat_imp(clustering_labels_kmeans12, dfX_feat, name):
scaler = MinMaxScaler()
df_scaled = pd.DataFrame(scaler.fit_transform(dfX_feat), columns = dfX_feat.columns)
y = clustering_labels_kmeans12
X = dfX_feat
df_scaled['kmeans'] = clustering_labels_kmeans12
clf = RandomForestClassifier(n_estimators=100).fit(X, y)
selected_columns = list(pd.DataFrame(np.array([clf.feature_importances_, X.columns]).T, columns=['Importance', 'Feature'])
.sort_values("Importance", ascending=False)
.head(7)
.Feature
.values)
tidy = df_scaled[selected_columns+['kmeans']].melt(id_vars='kmeans')
fig, ax = plt.subplots(figsize=(15, 5))
sns.barplot(x='kmeans', y='value', hue='variable', data=tidy, palette='Set3')
plt.legend(loc='upper right')
plt.title('Kmeans 12', fontsize = 20)
plt.savefig('./' + name , dpi=300)
def get_transition_matrix(clustering_labels_kmeans12, dfy, dfPatID, name):
clusters = 12
pats = pd.DataFrame(columns = ['SepsisLabel', 'patid'])
pats['SepsisLabel'] = dfy
pats['patid'] = dfPatID
p = pats.groupby('patid').max()
zip_iterator = zip(p.index, p['SepsisLabel'].values)
sepsisp = dict(zip_iterator)
matrix_kmeans12 = np.zeros((clusters, clusters))
matrix_kmeans12_control = np.zeros((clusters, clusters))
index = dfPatID.index
for i in range(len(dfy)-1):
if(dfPatID[index[i]] == dfPatID[index[i+1]]):
if(sepsisp[dfPatID[index[i]]] == 1):
matrix_kmeans12[clustering_labels_kmeans12[i], clustering_labels_kmeans12[i+1]] += 1
else:
matrix_kmeans12_control[clustering_labels_kmeans12[i], clustering_labels_kmeans12[i+1]] += 1
np.save( 'sepsis_' + name, matrix_kmeans12)
np.save('control_' + name, matrix_kmeans12_control)
return matrix_kmeans12, matrix_kmeans12_control
def get_transition_matrix_grady(clustering_labels_kmeans12, dfy, dfPatID, name):
clusters = 12
pats = pd.DataFrame(columns = ['SepsisLabel', 'patid'])
pats['SepsisLabel'] = dfy
pats['patid'] = dfPatID.values
p = pats.groupby('patid').max()
zip_iterator = zip(p.index, p['SepsisLabel'].values)
sepsisp = dict(zip_iterator)
matrix_kmeans12 = np.zeros((clusters, clusters))
matrix_kmeans12_control = np.zeros((clusters, clusters))
index = dfPatID.index
dfPatID = dfPatID.values[:,0].astype('int64')
for i in range(len(dfy)-1):
if(dfPatID[index[i]] == dfPatID[index[i+1]]):
if(sepsisp[dfPatID[index[i]]] == 1):
matrix_kmeans12[clustering_labels_kmeans12[i], clustering_labels_kmeans12[i+1]] += 1
else:
matrix_kmeans12_control[clustering_labels_kmeans12[i], clustering_labels_kmeans12[i+1]] += 1
np.save( 'sepsis_' + name, matrix_kmeans12)
np.save('control_' + name, matrix_kmeans12_control)
return matrix_kmeans12, matrix_kmeans12_control
def train_classifier(X_train, y_train, X_test, y_test, useGPU = True, final_params = None):
wts = None
xgtrain = xgb.DMatrix(X_train, label=y_train)
res = {}
dtest = xgb.DMatrix(X_test, label = y_test)
param_init = {
"objective": "multi:softmax",
"num_class": 12,
"tree_method": "hist",
"eval_metric": "auc",
"sampling_method": "uniform",
"learning_rate" : 0.3,
"n_estimators": 1000,
"max_depth":5,
"min_child_weight":1,
"gamma":0.1,
"reg_alpha":0.1,
"subsample": 1,
"colsample_bytree":1,
"nthread":4,
"scale_pos_weight":1,
"seed":27
}
if useGPU:
param_init['gpu_id'] = 0
param_init['tree_method'] = 'gpu_hist'
param_init['sampling_method'] = 'gradient_based'
if final_params is not None:
params = final_params
else:
xgb1 = XGBClassifier(
**param_init)
#Get n trees
cvresult = xgb.cv(xgb1.get_xgb_params(), xgtrain, num_boost_round=param_init["n_estimators"], nfold=5, metrics='auc', \
early_stopping_rounds=10)
xgb1.set_params(n_estimators=cvresult.shape[0])
print(xgb1.get_params()['n_estimators'])
#Tune tree parameters
param_grid1 = {
'max_depth' : range(2,10,1),
'min_child_weight': np.arange(0.01, 5, 0.5)
}
hyperparams = []
accuracies = []
for max_depth in param_grid1['max_depth']:
for min_child_weight in param_grid1['min_child_weight']:
xgb1.set_params(max_depth = max_depth, min_child_weight = min_child_weight)
param = xgb1.get_xgb_params()
model_pred = xgb.train(
param,
xgtrain,
evals=[(dtest, "test")],
evals_result=res,
early_stopping_rounds=10,
num_boost_round=200,
xgb_model= None,
verbose_eval = False
)
# Predict training set:
dtrain_predictions = model_pred.predict(xgtrain)
# Predict test set:
dtest_predictions = model_pred.predict(dtest)
# Print model report:
print("\nModel Report")
auc_train = metrics.roc_auc_score(y_train, dtrain_predictions)
auc_test = metrics.roc_auc_score(y_test, dtest_predictions)
print(
"AUC Score (Train): %f"
% auc_train
)
print(
"AUC Score (Test): %f"
% auc_test
)
fpr_train, tpr_train, thresholds_train = metrics.roc_curve(y_train, dtrain_predictions)
fpr, tpr, thresholds = metrics.roc_curve(y_test, dtest_predictions)
gmean = np.sqrt(tpr_train * (1 - fpr_train))
precision, recall, threshpr = metrics.precision_recall_curve(y_test, dtest_predictions)
fscore = (2 * precision * recall) / (precision + recall)
fscore[np.isnan(fscore)] = 0
index = np.argmax(fscore)
fscoreOpt = round(fscore[index], ndigits = 4)
thresholdOpt = round(threshpr[index], ndigits = 4)
#print('Best Threshold: {} with F-Score: {}'.format(thresholdOpt, fscoreOpt))
p_threshold = thresholdOpt
cm = confusion_matrix(y_test.values, (dtest_predictions > p_threshold) * 1)
TP = cm[1][1]
TN = cm[0][0]
FP = cm[0][1]
FN = cm[1][0]
# Sensitivity, hit rate, recall, or true positive rate
TPR = TP / (TP + FN)
# Specificity or true negative rate
TNR = TN / (TN + FP)
# Precision or positive predictive value
PPV = TP / (TP + FP)
# Negative predictive value
NPV = TN / (TN + FN)
# Fall out or false positive rate
FPR = FP / (FP + TN)
# False negative rate
FNR = FN / (TP + FN)
# False discovery rate
FDR = FP / (TP + FP)
#print("Val Sensitivity:", TPR)
#print("Val Specificity:", TNR)
#print("Val Precision:", PPV)
#print("confusion matrix:\n", cm)
fscore = f1_score(y_test.values, (dtest_predictions > p_threshold) * 1)
accuracy = accuracy_score(y_test.values, (dtest_predictions > p_threshold) * 1)
results = {
"sensitivity" : TPR,
"specificity" : TNR,
"precision" : PPV,
"cm" : cm,
"auc_score" : auc_test,
"fpr" : fpr,
"tpr" : tpr,
"threshold" : p_threshold,
"fscore" : fscore,
"thresholds_fscore" : threshpr,
"accuracy": accuracy
}
hyperparams.append(param)
accuracies.append(accuracy)
best_accuracy = np.argmax(accuracies)
params = hyperparams[best_accuracy]
xgb1.set_params(**params)
param_grid3 = {
'subsample':[0.01, 0.1, 0.5, 0.3, 1],
'colsample_bytree':[0.01, 0.1, 0.5, 0.3, 1],
}
hyperparams = []
accuracies = []
for subsample in param_grid3['subsample']:
for colsample_bytree in param_grid3['colsample_bytree']:
xgb1.set_params(subsample = subsample, colsample_bytree = colsample_bytree)
param = xgb1.get_xgb_params()
model_pred = xgb.train(
param,
xgtrain,
evals=[(dtest, "test")],
evals_result=res,
early_stopping_rounds=10,
num_boost_round=200,
xgb_model=wts,
verbose_eval = False
)
# Predict training set:
dtrain_predictions = model_pred.predict(xgtrain)
# Predict test set:
dtest_predictions = model_pred.predict(dtest)
# Print model report:
print("\nModel Report")
auc_train = metrics.roc_auc_score(y_train, dtrain_predictions)
auc_test = metrics.roc_auc_score(y_test, dtest_predictions)
print(
"AUC Score (Train): %f"
% auc_train
)
print(
"AUC Score (Test): %f"
% auc_test
)
fpr_train, tpr_train, thresholds_train = metrics.roc_curve(y_train, dtrain_predictions)
fpr, tpr, thresholds = metrics.roc_curve(y_test, dtest_predictions)
gmean = np.sqrt(tpr_train * (1 - fpr_train))
precision, recall, threshpr = metrics.precision_recall_curve(y_test, dtest_predictions)
fscore = (2 * precision * recall) / (precision + recall)
fscore[np.isnan(fscore)] = 0
index = np.argmax(fscore)
fscoreOpt = round(fscore[index], ndigits = 4)
thresholdOpt = round(threshpr[index], ndigits = 4)
#print('Best Threshold: {} with F-Score: {}'.format(thresholdOpt, fscoreOpt))
p_threshold = thresholdOpt
cm = confusion_matrix(y_test.values, (dtest_predictions > p_threshold) * 1)
TP = cm[1][1]
TN = cm[0][0]
FP = cm[0][1]
FN = cm[1][0]
# Sensitivity, hit rate, recall, or true positive rate
TPR = TP / (TP + FN)
# Specificity or true negative rate
TNR = TN / (TN + FP)
# Precision or positive predictive value
PPV = TP / (TP + FP)
# Negative predictive value
NPV = TN / (TN + FN)
# Fall out or false positive rate
FPR = FP / (FP + TN)
# False negative rate
FNR = FN / (TP + FN)
# False discovery rate
FDR = FP / (TP + FP)
#print("Val Sensitivity:", TPR)
#print("Val Specificity:", TNR)
#print("Val Precision:", PPV)
#print("confusion matrix:\n", cm)
fscore = f1_score(y_test.values, (dtest_predictions > p_threshold) * 1)
accuracy = accuracy_score(y_test.values, (dtest_predictions > p_threshold) * 1)
results = {
"sensitivity" : TPR,
"specificity" : TNR,
"precision" : PPV,
"cm" : cm,
"auc_score" : auc_test,
"fpr" : fpr,
"tpr" : tpr,
"threshold" : p_threshold,
"fscore" : fscore,
"thresholds_fscore" : threshpr,
"accuracy": accuracy
}
hyperparams.append(param)
accuracies.append(accuracy)
best_accuracy = np.argmax(accuracies)
params = hyperparams[best_accuracy]
xgb1.set_params(**params)
#Tune learning rate
xgb1.set_params(learning_rate = 0.1)
params = xgb1.get_xgb_params()
cvresult = xgb.cv(param, xgtrain, num_boost_round=param_init["n_estimators"], nfold=5, \
metrics='auc', early_stopping_rounds=10)
xgb1.set_params(n_estimators=cvresult.shape[0])
params = xgb1.get_xgb_params()
#Final Model
model_pred = xgb.train(
params,
xgtrain,
evals=[(dtest, "test")],
evals_result=res,
early_stopping_rounds=10,
num_boost_round=200,
xgb_model= None,
verbose_eval = False
)
# Predict training set:
dtrain_predictions = model_pred.predict(xgtrain)
# Predict test set:
dtest_predictions = model_pred.predict(dtest)
# Print model report:
print("\nModel Report")
auc_train = metrics.roc_auc_score(y_train, dtrain_predictions)
auc_test = metrics.roc_auc_score(y_test, dtest_predictions)
print(
"AUC Score (Train): %f"
% auc_train
)
print(
"AUC Score (Test): %f"
% auc_test
)
fpr_train, tpr_train, thresholds_train = metrics.roc_curve(y_train, dtrain_predictions)
fpr, tpr, thresholds = metrics.roc_curve(y_test, dtest_predictions)
gmean = np.sqrt(tpr_train * (1 - fpr_train))
precision, recall, threshpr = metrics.precision_recall_curve(y_test, dtest_predictions)
fscore = (2 * precision * recall) / (precision + recall)
fscore[np.isnan(fscore)] = 0
index = np.argmax(fscore)
fscoreOpt = round(fscore[index], ndigits = 4)
thresholdOpt = round(threshpr[index], ndigits = 4)
print('Best Threshold: {} with F-Score: {}'.format(thresholdOpt, fscoreOpt))
p_threshold = thresholdOpt
cm = confusion_matrix(y_test.values, (dtest_predictions > p_threshold) * 1)
TP = cm[1][1]
TN = cm[0][0]
FP = cm[0][1]
FN = cm[1][0]
# Sensitivity, hit rate, recall, or true positive rate
TPR = TP / (TP + FN)
# Specificity or true negative rate
TNR = TN / (TN + FP)
# Precision or positive predictive value
PPV = TP / (TP + FP)
# Negative predictive value
NPV = TN / (TN + FN)
# Fall out or false positive rate
FPR = FP / (FP + TN)
# False negative rate
FNR = FN / (TP + FN)
# False discovery rate
FDR = FP / (TP + FP)
print("Val Sensitivity:", TPR)
print("Val Specificity:", TNR)
print("Val Precision:", PPV)
print("confusion matrix:\n", cm)
fscore = f1_score(y_test.values, (dtest_predictions > p_threshold) * 1)
accuracy = accuracy_score(y_test.values, (dtest_predictions > p_threshold) * 1)
results = {
"sensitivity" : TPR,
"specificity" : TNR,
"precision" : PPV,
"cm" : cm,
"auc_score" : auc_test,
"fpr" : fpr,
"tpr" : tpr,
"threshold" : p_threshold,
"fscore" : fscore,
"thresholds_fscore" : threshpr,
"accuracy": accuracy
}
return model_pred, results, params
def how_I_trained_classifier(data, kmeans12):
dfX, dfy, TestX, Testy, dfPatID, TestPatID = utils.train_test_split(data, data_physical['patient_id'], 23)
X_train = data_feat.loc[dfX.index]
y_train = kmeans12.predict(X_train)
X_test = data_feat.loc[TestX.index]
y_test = kmeans12.predict(X_test)
classifier, results, params = train_classifier(dfX, dfy, TestX, Testy)
utils.save_obj(classifier, './', 'xgb_classifier')
utils.save_obj(results, './', 'xgb_results')
utils.save_obj(params, './', 'xgb_params')
xgbparams = utils.load_obj('./', 'xgb_params')
wts = None
xgtrain = xgb.DMatrix(dfX, label=y_train)
res = {}
dtest = xgb.DMatrix(TestX, label = y_test)
params = xgbparams
model_pred = xgb.train(
params,
xgtrain,
evals=[(dtest, "test")],
evals_result=res,
early_stopping_rounds=10,
num_boost_round=200,
xgb_model= None,
verbose_eval = False
)
utils.save_obj(model_pred, './', 'final_classifier')
dtrain_predictions = model_pred.predict(xgtrain)
# Predict test set:
dtest_predictions = model_pred.predict(dtest)
accuracy= metrics.accuracy_score(dtest_predictions, y_test)
def get_cluster_membership(patID, clustering_labels_kmeans12, sepsisLabel):
import collections
path_to_data = 'C:/KamalLab/ai_sepsis-master/input_data/training_set'
pat_analyse = pd.DataFrame(columns = ['patid', 'clusterSeq', 'counter', 'time_to_sepsis', 'total_icu_time'])
temp_df = pd.DataFrame(columns = ['patid', 'labels'])
temp_df['patid'] = patID
temp_df['labels'] = clustering_labels_kmeans12
temp_df_pats = [x for _, x in temp_df.groupby(temp_df['patid'])]
for df in temp_df_pats:
label_list = df['labels'].values
counter = collections.Counter(label_list)
pat_id = df['patid'].values[0]
print(pat_id)
folder = pat_id[0]
number = pat_id[1:]
path_to_patient = path_to_data + folder + '/p' + number + '.psv'
pat_data_psv = pd.read_csv(path_to_patient, sep='|')
label_psv = pat_data_psv['SepsisLabel']
total_icu_time = len(label_psv)
try:
time_to_sepsis = label_psv.index[label_psv.values == 1][0] + 6
except IndexError:
time_to_sepsis = total_icu_time
pat_analyse.loc[len(pat_analyse)] = [pat_id,
label_list,
counter,
time_to_sepsis,
total_icu_time]
max_time_cluster = pat_analyse['counter'].apply(max)
pat_analyse['max_time_cluster'] = max_time_cluster
greater_than_25_clusters = pat_analyse['counter'].apply(lambda c: np.array(list(c))[np.where(list(c.values()) > sum(c)*0)[0]])
pat_analyse['greater_than_25_perc'] = greater_than_25_clusters
for cluster_num in range(12):
cluster_membership = pat_analyse['greater_than_25_perc'].apply(lambda x: cluster_num in x)
pat_analyse['Cluster' + str(cluster_num)] = cluster_membership
pats = pd.DataFrame(columns = ['SepsisLabel', 'patid'])
pats['SepsisLabel'] = sepsisLabel
pats['patid'] = patID
p = pats.groupby('patid').max()
zip_iterator = zip(p.index, p['SepsisLabel'].values)
sepsisp = dict(zip_iterator)
pat_analyse['Sepsis'] = sepsisp.values()
pat_analyse.to_csv('Grady_pat_analyse.csv')
return pat_analyse
#%%
def trajectories(patID, clustering_labels_kmeans12, sepsisLabel):
import collections
pat_analyse = pd.DataFrame(columns = ['patid', 'clusterSeq', 'states_transition', 'counter',
'time_to_sepsis_subpat', 'total_icu_time_subpat',
'last_cluster_before_sepsis', 'max_time_cluster'])
temp_df = pd.DataFrame(columns = ['patid', 'labels', 'sepsislabels'])
temp_df['patid'] = patID
temp_df['labels'] = clustering_labels_kmeans12
temp_df['sepsislabels'] = sepsisLabel
temp_df_pats = [x for _, x in temp_df.groupby(temp_df['patid'])]
for df in temp_df_pats:
label_list = df['labels'].values
counter = collections.Counter(label_list)
pat_id = df['patid'].values[0]
print(pat_id)
total_icu_time = len(label_list)
sepsis_time = np.where(df['sepsislabels'].values == 1)[0]
if len(sepsis_time) != 0:
time_to_sepsis = sepsis_time[0]
last_cluster_before_sepsis = label_list[time_to_sepsis]
else:
time_to_sepsis = total_icu_time
last_cluster_before_sepsis = -1
full_label_list = np.copy(label_list)
l = len(label_list)
i = 1
while(i<l):
if label_list[i] == label_list[i-1]:
label_list = np.delete(label_list, i)
l = l - 1
else:
i = i + 1
pat_analyse.loc[len(pat_analyse)] = [pat_id, full_label_list, label_list, counter,
time_to_sepsis, total_icu_time,
last_cluster_before_sepsis, max(counter)]
greater_than_25_clusters = pat_analyse['counter'].apply(lambda c: np.array(list(c))[np.where(list(c.values()) > sum(c)*0)[0]])
pat_analyse['greater_than_25_perc'] = greater_than_25_clusters
pats = pd.DataFrame(columns = ['SepsisLabel', 'patid'])
pats['SepsisLabel'] = sepsisLabel
pats['patid'] = patID
p = pats.groupby('patid').max()
zip_iterator = zip(p.index, p['SepsisLabel'].values)
sepsisp = dict(zip_iterator)
pat_analyse['Sepsis'] = sepsisp.values()
return pat_analyse