-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathKaplanMeier.py
329 lines (240 loc) · 12.5 KB
/
KaplanMeier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
# -*- coding: utf-8 -*-
"""
Created on Fri Jun 2 11:00:39 2023
@author: mehak
"""
import pandas as pd
import os
import numpy as np
import matplotlib.pyplot as plt
import pickle
from datetime import date
import clustering_functions as clust_func
import utils
import seaborn as sns
from sklearn.preprocessing import StandardScaler, normalize, MinMaxScaler
kmeans = utils.load_obj('./', 'feat_kmeans12_median.pkl')
#%%
trajectory_grady = pd.read_pickle('./Grady/trajectories_Grady_icu_discharge.pkl')
trajectory_grady_short_stay = trajectory_grady.loc[trajectory_grady.time_to_death < 24*21]
#%%
import lifelines
from lifelines import KaplanMeierFitter
import matplotlib.colors as mcolors
kmf = KaplanMeierFitter()
plt.style.use("ggplot")
km_data = trajectory_grady_short_stay.loc[trajectory_grady_short_stay.time_to_sepsis_subpat > 0]
#kmf.fit(km_data['time_to_sepsis'], km_data['Sepsis'], label='control')
#ax = kmf.plot_survival_function()
plt.figure(figsize = (20,10))
colours = ['blue', 'orange', 'green', 'red', 'purple', 'brown', 'pink', 'gray', 'olive', 'cyan', 'yellow', 'magenta']
parameters = {'axes.labelsize': 25,
'axes.titlesize': 35,
'figure.titlesize': 35,
'legend.fontsize': 25,
'legend.title_fontsize' : 25,
'xtick.labelsize' : 20,
'ytick.labelsize': 20}
plt.rcParams.update(parameters)
for cluster_num in range(12):
index = (km_data.last_cluster_before_sepsis == cluster_num).values
kmf.fit(km_data[index]['time_to_sepsis_subpat'], km_data[index]['Sepsis'], label='Cluster ' + str(cluster_num))
ax = kmf.plot_survival_function(ci_show = False, color = colours[cluster_num], linewidth=2)
ax.set_title('Kaplan Meier Curves indicating sepsis onset times')
plt.xlabel('Time (hours) from ICU admission')
plt.ylabel('Ratio of patients who developed sepsis')
#plt.savefig('KP_Grady_sepsis.pdf', bbox_inches = "tight")
#%%
#km_data = trajectory_new.loc[trajectory_new['Sepsis'] == 1]
#kmf.fit(km_data['time_to_sepsis'], km_data['Sepsis'], label='control')
km_data = trajectory_grady_short_stay.loc[trajectory_grady_short_stay['Sepsis'] == 1]
#kmf.fit(km_data['time_to_sepsis'], km_data['Sepsis'], label='control')
#ax = kmf.plot_survival_function()
plt.figure(figsize = (20,10))
parameters = {'axes.labelsize': 25,
'axes.titlesize': 35,
'figure.titlesize': 35,
'legend.fontsize': 25,
'legend.title_fontsize' : 25,
'xtick.labelsize' : 20,
'ytick.labelsize': 20}
plt.rcParams.update(parameters)
for cluster_num in range(12):
index = (km_data.last_cluster_before_sepsis == cluster_num).values
kmf.fit(km_data[index]['time_to_death']/24, km_data[index]['death'], label='Cluster ' + str(cluster_num))
ax = kmf.plot_survival_function(ci_show = False, color = colours[cluster_num], linewidth=2)
ax.set_title('Kaplan Meier Curves Indicating Mortality')
ax.set_xticks([0,7,14,21])
plt.xlabel('Time (days) from Sepsis Onset')
plt.ylabel('Survival Probability')
#plt.savefig('KP_Grady_death_days.pdf', bbox_inches = "tight")
#%%
def trajectories(patID, clustering_labels_kmeans12, sepsisLabel):
import collections
pat_analyse = pd.DataFrame(columns = ['patid', 'clusterSeq', 'states_transition', 'counter',
'time_to_sepsis_subpat', 'total_icu_time_subpat',
'last_cluster_before_sepsis', 'max_time_cluster'])
temp_df = pd.DataFrame(columns = ['patid', 'labels', 'sepsislabels'])
temp_df['patid'] = patID
temp_df['labels'] = clustering_labels_kmeans12
temp_df['sepsislabels'] = sepsisLabel
temp_df_pats = [x for _, x in temp_df.groupby(temp_df['patid'])]
for df in temp_df_pats:
label_list = df['labels'].values
counter = collections.Counter(label_list)
pat_id = df['patid'].values[0]
print(pat_id)
total_icu_time = len(label_list)
sepsis_time = np.where(df['sepsislabels'].values == 1)[0]
if len(sepsis_time) != 0:
time_to_sepsis = sepsis_time[0]
last_cluster_before_sepsis = label_list[time_to_sepsis]
else:
time_to_sepsis = total_icu_time
last_cluster_before_sepsis = -1
full_label_list = np.copy(label_list)
l = len(label_list)
i = 1
while(i<l):
if label_list[i] == label_list[i-1]:
label_list = np.delete(label_list, i)
l = l - 1
else:
i = i + 1
pat_analyse.loc[len(pat_analyse)] = [pat_id, full_label_list, label_list, counter,
time_to_sepsis, total_icu_time,
last_cluster_before_sepsis, max(counter)]
greater_than_25_clusters = pat_analyse['counter'].apply(lambda c: np.array(list(c))[np.where(list(c.values()) > sum(c)*0)[0]])
pat_analyse['greater_than_25_perc'] = greater_than_25_clusters
pats = pd.DataFrame(columns = ['SepsisLabel', 'patid'])
pats['SepsisLabel'] = sepsisLabel
pats['patid'] = patID
p = pats.groupby('patid').max()
zip_iterator = zip(p.index, p['SepsisLabel'].values)
sepsisp = dict(zip_iterator)
pat_analyse['Sepsis'] = sepsisp.values()
return pat_analyse
#%%
#%%
import collections
def get_sepsis_cluster(cluster_seqs, sepsis_subpats):
clusters = []
for i in range(len(cluster_seqs)):
try:
if sepsis_subpats[i] == -1:
clusters.append(-1)
elif sepsis_subpats[i] == 0:
clusters.append(cluster_seqs[i][0])
else:
clusters.append(cluster_seqs[i][sepsis_subpats[i-1]])
except:
clusters.append(cluster_seqs[i][0])
return np.array(clusters)
#%%
def create_trajectory_df_emory(emory_data):
pat_analyse = pd.DataFrame(columns = ['patid', 'clusterSeq', 'states_transition', 'counter',
'time_to_sepsis_subpat', 'total_icu_time_subpat',
'last_cluster_before_sepsis', 'max_time_cluster'])
pat_analyse['patid'] = emory_data.patid
pat_analyse['clusterSeq'] = emory_data.cluster_seq
pat_analyse['states_transition'] = emory_data.cluster_seq.apply(np.unique)
pat_analyse['counter'] = emory_data.cluster_seq.apply(lambda x: collections.Counter(x) )
pat_analyse['time_to_sepsis_subpat'] = emory_data.sepsis_subpat
pat_analyse['total_icu_time_subpat'] = emory_data.icu_len_subpat
pat_analyse['last_cluster_before_sepsis'] = get_sepsis_cluster(emory_data.cluster_seq.values, emory_data.sepsis_subpat.values)
pat_analyse['max_time_cluster'] = pat_analyse['counter'].apply(max)
pat_analyse['Sepsis'] = np.int32(pat_analyse['time_to_sepsis_subpat'] != -1)
pat_analyse['death'] = np.int32(emory_data.dischage_status == 'EXPIRED')
pat_analyse['time_to_death_subpat'] = emory_data.discharge_time_diff + emory_data.icu_len_subpat
return pat_analyse
#%%
emory_data1 = pd.read_pickle('./Emory/icu_pats_subpats_corrected_2016.pkl')
trajectories1 = create_trajectory_df_emory(emory_data1)
emory_data2 = pd.read_pickle('./Emory/icu_pats_subpats_corrected_2017.pkl')
trajectories2 = create_trajectory_df_emory(emory_data2)
emory_data3 = pd.read_pickle('./Emory/icu_pats_subpats_corrected_2018.pkl')
trajectories3 = create_trajectory_df_emory(emory_data3)
emory_data4 = pd.read_pickle('./Emory/icu_pats_subpats_corrected_2019.pkl')
trajectories4 = create_trajectory_df_emory(emory_data4)
trajectories_emory = pd.concat((trajectories1, trajectories2, trajectories3, trajectories4))
#%%
kmf = KaplanMeierFitter()
plt.style.use("ggplot")
km_data = trajectories_emory.loc[(trajectories_emory.time_to_sepsis_subpat > 0) & (trajectories_emory.time_to_sepsis_subpat < 200)]
#kmf.fit(km_data['time_to_sepsis'], km_data['Sepsis'], label='control')
#ax = kmf.plot_survival_function()
plt.figure(figsize = (20,10))
colours = ['blue', 'orange', 'green', 'red', 'purple', 'brown', 'pink', 'gray', 'olive', 'cyan', 'yellow', 'magenta']
parameters = {'axes.labelsize': 25,
'axes.titlesize': 35,
'figure.titlesize': 35,
'legend.fontsize': 25,
'legend.title_fontsize' : 25,
'xtick.labelsize' : 20,
'ytick.labelsize': 20}
plt.rcParams.update(parameters)
for cluster_num in range(12):
index = (km_data.last_cluster_before_sepsis == cluster_num).values
kmf.fit(km_data[index]['time_to_sepsis_subpat'], km_data[index]['Sepsis'], label='Cluster ' + str(cluster_num))
ax = kmf.plot_survival_function(ci_show = False, color = colours[cluster_num], linewidth=2)
ax.set_title('Kaplan Meier Curves indicating sepsis onset times')
plt.xlabel('Time (hours) from ICU admission')
plt.ylabel('Ratio of patients who developed sepsis')
#plt.savefig('KP_Emory_sepsis.pdf', bbox_inches = "tight")
#%%
#km_data = trajectory_new.loc[trajectory_new['Sepsis'] == 1]
#kmf.fit(km_data['time_to_sepsis'], km_data['Sepsis'], label='control')
km_data = trajectories_emory.loc[(trajectories_emory['Sepsis'] == 1) & (trajectories_emory['time_to_death_subpat']*3 < 21*24)]
#kmf.fit(km_data['time_to_sepsis'], km_data['Sepsis'], label='control')
#ax = kmf.plot_survival_function()
plt.figure(figsize = (20,10))
parameters = {'axes.labelsize': 25,
'axes.titlesize': 35,
'figure.titlesize': 35,
'legend.fontsize': 20,
'legend.title_fontsize' : 25,
'xtick.labelsize' : 20,
'ytick.labelsize': 20}
plt.rcParams.update(parameters)
for cluster_num in range(12):
index = (km_data.last_cluster_before_sepsis == cluster_num).values
kmf.fit(km_data[index]['time_to_death_subpat']*3/24, km_data[index]['death'], label='Cluster ' + str(cluster_num))
ax = kmf.plot_survival_function(ci_show = False, color = colours[cluster_num], linewidth=2)
ax.set_title('Kaplan Meier Curves Indicating Mortality')
ax.set_xticks([0,7,14,21])
plt.xlabel('Time (days) from Sepsis Onset')
plt.ylabel('Survival Probability')
#plt.savefig('KP_Emory_death_days.pdf', bbox_inches = "tight")
#%%
markov_model_clustering = pd.read_pickle('markov_model_clustering_emory.pickle')
markov_model_clustering.patid = markov_model_clustering.patid.astype('int64')
trajectories_emory.patid = trajectories_emory.patid.astype('int64')
sepsis_trajectories_emory_markov = markov_model_clustering.join(trajectories_emory.loc[trajectories_emory.Sepsis == 1], on = 'patid', how = 'left', lsuffix = 'markov_df', rsuffix = 'r')
#%%
trajectories_emory_markov = trajectories_emory.loc[trajectories_emory.patid.isin(markov_model_clustering.patid)]
trajectories_emory_markov['cluster'] = [float("nan")]*len(trajectories_emory_markov)
for i in range(len(trajectories_emory_markov)):
patid = trajectories_emory_markov.iloc[i]['patid']
trajectories_emory_markov.loc[trajectories_emory_markov.index == trajectories_emory_markov.index[i], 'cluster'] = markov_model_clustering.loc[markov_model_clustering.patid == patid]['cluster'].values[0]
#%%
km_data = trajectories_emory_markov.loc[trajectories_emory_markov['time_to_death_subpat']*3 < 21*24] #.loc[(trajectories_emory['Sepsis'] == 1) & (trajectories_emory['time_to_death_subpat']*3 < 21*24)]
#kmf.fit(km_data['time_to_sepsis'], km_data['Sepsis'], label='control')
#ax = kmf.plot_survival_function()
plt.figure(figsize = (20,10))
parameters = {'axes.labelsize': 25,
'axes.titlesize': 35,
'figure.titlesize': 35,
'legend.fontsize': 20,
'legend.title_fontsize' : 25,
'xtick.labelsize' : 20,
'ytick.labelsize': 20}
plt.rcParams.update(parameters)
for cluster_num in range(5):
index = (km_data.cluster == cluster_num).values
kmf.fit(km_data[index]['time_to_death_subpat']*3/24, km_data[index]['death'], label='Cluster ' + str(cluster_num + 1))
ax = kmf.plot_survival_function(ci_show = False, color = colours[cluster_num], linewidth=2)
ax.set_title('Kaplan Meier Curves Indicating Mortality')
ax.set_xticks([0,7,14,21])
plt.xlabel('Time (days) from Sepsis Onset')
plt.ylabel('Survival Probability')
#plt.savefig('KP_Emory_death_days.pdf', bbox_inches = "tight")