-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathtraining.py
134 lines (109 loc) · 9.57 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
from typing import Dict, Tuple
from omegaconf import DictConfig
import torch
from torch import Tensor, autograd
from torch.distributions import Beta, Bernoulli
from torch.optim import Optimizer
from torch.nn import functional as F
from models import GAILDiscriminator, REDDiscriminator, SoftActor, TwinCritic, make_gail_input, update_target_network
# Performs one SAC update
def sac_update(actor: SoftActor, critic: TwinCritic, log_alpha: Tensor, target_critic, transitions: Dict[str, Tensor], actor_optimiser: Optimizer, critic_optimiser: Optimizer, temperature_optimiser: Optimizer, discount: float, entropy_target: float, polyak_factor: float) -> Tuple[Tensor, Tensor]:
states, actions, rewards, next_states, terminals, weights, absorbing = transitions['states'], transitions['actions'], transitions['rewards'], transitions['next_states'], transitions['terminals'], transitions['weights'], transitions['absorbing']
alpha = log_alpha.exp()
# Compute value function loss
with torch.no_grad():
new_next_policies = actor(next_states)
new_next_actions = new_next_policies.sample()
new_next_log_probs = new_next_policies.log_prob(new_next_actions) # Log prob calculated before absorbing state rewrite; these are masked out of target values, but tends to result in NaNs as the policy might be strange over the all-zeros "absorbing action", and NaNs propagate into the target values, so we just avoid it in the first place
new_next_actions = (1 - absorbing.unsqueeze(dim=1)) * new_next_actions # If current state is absorbing, manually overwrite with absorbing state action
target_values = torch.min(*target_critic(next_states, new_next_actions)) - (1 - absorbing) * alpha * new_next_log_probs # Agent has no control at absorbing state, therefore do not maximise entropy on these
target_values = rewards + (1 - terminals) * discount * target_values
values_1, values_2 = critic(states, actions)
value_loss = (weights * (values_1 - target_values).pow(2)).mean() + (weights * (values_2 - target_values).pow(2)).mean()
# Update critic
critic_optimiser.zero_grad(set_to_none=True)
value_loss.backward()
critic_optimiser.step()
# Compute policy loss
new_policies = actor(states)
new_actions = new_policies.rsample()
new_log_probs = new_policies.log_prob(new_actions)
new_values = torch.min(*critic(states, new_actions))
policy_loss = (weights * (1 - absorbing) * alpha.detach() * new_log_probs - new_values).mean() # Do not update actor on absorbing states (no control)
# Update actor
actor_optimiser.zero_grad(set_to_none=True)
policy_loss.backward()
actor_optimiser.step()
# Compute temperature loss
temperature_loss = -(weights * (1 - absorbing) * alpha * (new_log_probs.detach() + entropy_target)).mean() # Do not update temperature on absorbing states (no control)
# Update temperature
temperature_optimiser.zero_grad(set_to_none=True)
temperature_loss.backward()
temperature_optimiser.step()
# Update target critic
update_target_network(critic, target_critic, polyak_factor)
return new_log_probs.detach(), torch.min(values_1, values_2).detach()
# Performs a behavioural cloning update
def behavioural_cloning_update(actor: SoftActor, expert_transition: Dict[str, Tensor], actor_optimiser: Optimizer):
expert_state, expert_action, weight = expert_transition['states'], expert_transition['actions'], expert_transition['weights']
expert_action = expert_action.clamp(min=-1 + 1e-6, max=1 - 1e-6) # Clamp expert actions to (-1, 1)
actor_optimiser.zero_grad(set_to_none=True)
behavioural_cloning_loss = (weight * -actor.log_prob(expert_state, expert_action)).mean() # Maximum likelihood objective
behavioural_cloning_loss.backward()
actor_optimiser.step()
# Performs a target estimation update
def target_estimation_update(discriminator: REDDiscriminator, expert_transition: Dict[str, Tensor], discriminator_optimiser: Optimizer):
expert_state, expert_action, weight = expert_transition['states'], expert_transition['actions'], expert_transition['weights']
discriminator_optimiser.zero_grad(set_to_none=True)
prediction, target = discriminator(expert_state, expert_action)
regression_loss = (weight * (prediction - target).pow(2).mean(dim=1)).mean()
regression_loss.backward()
discriminator_optimiser.step()
# Creates a convex combination of 2 variables (e.g. state 1, state 2)
def _mix_vars(x_1: Tensor, x_2: Tensor, eps: Tensor) -> Tensor:
mix = eps.unsqueeze(dim=1) if x_1.ndim == 2 else eps # Assumes variables are either 1D or 2D
return mix * x_1 + (1 - mix) * x_2 # Mix variables with broadcasting weights
# Performs an adversarial imitation learning update
def adversarial_imitation_update(actor: SoftActor, discriminator: GAILDiscriminator, transitions: Dict[str, Tensor], expert_transitions: Dict[str, Tensor], discriminator_optimiser: Optimizer, imitation_cfg: DictConfig):
reward_shaping, subtract_log_policy, loss_function, grad_penalty, mixup_alpha, entropy_bonus, pos_class_prior, nonnegative_margin = imitation_cfg.discriminator.reward_shaping, imitation_cfg.discriminator.subtract_log_policy, imitation_cfg.loss_function, imitation_cfg.grad_penalty, imitation_cfg.mixup_alpha, imitation_cfg.entropy_bonus, imitation_cfg.pos_class_prior, imitation_cfg.nonnegative_margin
expert_state, expert_action, expert_next_state, expert_terminal, expert_weight = expert_transitions['states'], expert_transitions['actions'], expert_transitions['next_states'], expert_transitions['terminals'], expert_transitions['weights']
state, action, next_state, terminal, weight = transitions['states'], transitions['actions'], transitions['next_states'], transitions['terminals'], transitions['weights']
# Discriminator training objective
discriminator_optimiser.zero_grad(set_to_none=True)
if loss_function in ['BCE', 'PUGAIL']:
with torch.no_grad(): policy_input, expert_input = make_gail_input(state, action, next_state, terminal, actor, reward_shaping, subtract_log_policy), make_gail_input(expert_state, expert_action, expert_next_state, expert_terminal, actor, reward_shaping, subtract_log_policy)
D_policy, D_expert = discriminator(**policy_input), discriminator(**expert_input)
if loss_function == 'BCE':
expert_loss = F.binary_cross_entropy_with_logits(D_expert, torch.ones_like(D_expert), weight=expert_weight) # Loss on "real" (expert) data
policy_loss = F.binary_cross_entropy_with_logits(D_policy, torch.zeros_like(D_policy), weight=weight) # Loss on "fake" (policy) data
else:
expert_loss = pos_class_prior * F.binary_cross_entropy_with_logits(D_expert, torch.ones_like(D_expert), weight=expert_weight) # Loss on "real" (expert) data
policy_loss = torch.clamp(pos_class_prior * F.binary_cross_entropy_with_logits(D_expert, torch.zeros_like(D_expert), weight=expert_weight) - F.binary_cross_entropy_with_logits(D_policy, torch.zeros_like(D_policy), weight=weight), min=-nonnegative_margin) # Loss on "real" and "unlabelled" (policy) data
(expert_loss + policy_loss).backward(retain_graph=True)
entropy_Ds, entropy_weights = [D_expert, D_policy], [expert_weight, weight]
elif loss_function == 'Mixup':
batch_size = state.size(0)
eps = Beta(torch.full((batch_size, ), float(mixup_alpha)), torch.full((batch_size, ), float(mixup_alpha))).sample() # Sample ε ∼ Beta(α, α)
mix_state, mix_action, mix_next_state, mix_terminal, mix_weight = _mix_vars(expert_state, state, eps), _mix_vars(expert_action, action, eps), _mix_vars(expert_next_state, next_state, eps), _mix_vars(expert_terminal, terminal, eps), _mix_vars(expert_weight, weight, eps) # Create convex combination of expert and policy data
with torch.no_grad(): mix_input = make_gail_input(mix_state, mix_action, mix_next_state, mix_terminal, actor, reward_shaping, subtract_log_policy)
D_mix = discriminator(**mix_input)
mix_loss = eps * F.binary_cross_entropy_with_logits(D_mix, torch.ones_like(D_mix), weight=mix_weight, reduction='none') + (1 - eps) * F.binary_cross_entropy_with_logits(D_mix, torch.zeros_like(D_mix), weight=mix_weight, reduction='none')
mix_loss.mean(dim=0).backward(retain_graph=True)
entropy_Ds, entropy_weights = [D_mix], [mix_weight]
# Gradient penalty
if grad_penalty > 0:
eps = torch.rand_like(terminal) # Sample ε ∼ U(0, 1)
eps_2d = eps.unsqueeze(dim=1) # Expand weights for broadcasting
mix_state, mix_action, mix_next_state, mix_terminal, mix_weight = _mix_vars(expert_state, state, eps), _mix_vars(expert_action, action, eps), _mix_vars(expert_next_state, next_state, eps), _mix_vars(expert_terminal, terminal, eps), _mix_vars(expert_weight, weight, eps) # Create convex combination of expert and policy data
mix_state.requires_grad_()
mix_action.requires_grad_()
with torch.no_grad(): mix_input = make_gail_input(mix_state, mix_action, mix_next_state, mix_terminal, actor, reward_shaping, subtract_log_policy)
D_mix = discriminator(**mix_input)
grads = autograd.grad(D_mix, (mix_state, mix_action), torch.ones_like(D_mix), create_graph=True) # Calculate gradients wrt inputs (does not accumulate parameter gradients)
grad_penalty_loss = grad_penalty * mix_weight * sum([grad.norm(2, dim=1) ** 2 for grad in grads]) # Penalise norm of input gradients (assumes 1D inputs)
grad_penalty_loss.mean(dim=0).backward()
# Entropy bonus
if entropy_bonus > 0:
entropy_bonus_loss = -entropy_bonus * (sum([w * Bernoulli(logits=l).entropy() for l, w in zip(entropy_Ds, entropy_weights)])).mean() # Maximise entropy
entropy_bonus_loss.backward()
discriminator_optimiser.step()