-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathtrain.py
247 lines (214 loc) · 16.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
from collections import deque
import os
import time
import hydra
import numpy as np
from omegaconf import DictConfig, OmegaConf
import torch
from torch import optim
from torch.utils.data import DataLoader
from tqdm import tqdm
from environments import D4RLEnv, ENVS
from evaluation import evaluate_agent
from memory import ReplayMemory
from models import GAILDiscriminator, GMMILDiscriminator, PWILDiscriminator, REDDiscriminator, SoftActor, RewardRelabeller, TwinCritic, create_target_network, make_gail_input, mix_expert_agent_transitions
from training import adversarial_imitation_update, behavioural_cloning_update, sac_update, target_estimation_update
from utils import cycle, flatten_list_dicts, lineplot
@hydra.main(version_base=None, config_path='conf', config_name='train_config')
def main(cfg: DictConfig):
return train(cfg)
def train(cfg: DictConfig, file_prefix: str='') -> float:
# Configuration check
assert cfg.algorithm in ['AdRIL', 'BC', 'DRIL', 'GAIL', 'GMMIL', 'PWIL', 'RED', 'SAC']
assert cfg.env in ENVS
cfg.memory.size = min(cfg.steps, cfg.memory.size) # Set max replay memory size to min of environment steps and replay memory size
assert cfg.bc_pretraining.iterations >= 0
assert cfg.imitation.trajectories >= 0
assert cfg.imitation.subsample >= 1
assert cfg.imitation.mix_expert_data in ['none', 'mixed_batch', 'prefill_memory']
if cfg.algorithm == 'AdRIL':
assert cfg.imitation.mix_expert_data == 'mixed_batch'
assert cfg.imitation.update_freq >= 0
elif cfg.algorithm == 'DRIL':
assert 0 <= cfg.imitation.quantile_cutoff <= 1
elif cfg.algorithm == 'GAIL':
assert cfg.imitation.mix_expert_data != 'prefill_memory' # Technically possible, but makes the control flow for training the discriminator more complicated
assert cfg.imitation.discriminator.reward_function in ['AIRL', 'FAIRL', 'GAIL']
assert cfg.imitation.grad_penalty >= 0
assert cfg.imitation.entropy_bonus >= 0
assert cfg.imitation.loss_function in ['BCE', 'Mixup', 'PUGAIL']
if cfg.imitation.loss_function == 'Mixup': assert cfg.imitation.mixup_alpha > 0
if cfg.imitation.loss_function == 'PUGAIL': assert 0 <= cfg.imitation.pos_class_prior <= 1 and cfg.imitation.nonnegative_margin >= 0
assert cfg.logging.interval >= 0
# General setup
np.random.seed(cfg.seed)
torch.manual_seed(cfg.seed)
# Set up environment
env, eval_env = D4RLEnv(cfg.env, cfg.imitation.absorbing, load_data=True), D4RLEnv(cfg.env, cfg.imitation.absorbing)
env.seed(cfg.seed)
eval_env.seed(cfg.seed)
normalization_max, normalization_min = env.env.ref_max_score, env.env.ref_min_score
expert_memory = env.get_dataset(trajectories=cfg.imitation.trajectories, subsample=cfg.imitation.subsample) # Load expert trajectories dataset
state_size, action_size = env.observation_space.shape[0], env.action_space.shape[0]
# Set up agent
actor, critic, log_alpha = SoftActor(state_size, action_size, cfg.reinforcement.actor), TwinCritic(state_size, action_size, cfg.reinforcement.critic), torch.zeros(1, requires_grad=True)
target_critic, entropy_target = create_target_network(critic), cfg.reinforcement.target_temperature * action_size # Entropy target heuristic from SAC paper for continuous action domains
actor_optimiser, critic_optimiser, temperature_optimiser = optim.AdamW(actor.parameters(), lr=cfg.training.learning_rate, weight_decay=cfg.training.weight_decay), optim.AdamW(critic.parameters(), lr=cfg.training.learning_rate, weight_decay=cfg.training.weight_decay), optim.Adam([log_alpha], lr=cfg.training.learning_rate)
memory = ReplayMemory(cfg.memory.size, state_size, action_size, cfg.imitation.absorbing)
# Set up imitation learning components
if cfg.algorithm in ['AdRIL', 'DRIL', 'GAIL', 'GMMIL', 'PWIL', 'RED']:
if cfg.algorithm == 'AdRIL':
discriminator = RewardRelabeller(cfg.imitation.update_freq, cfg.imitation.balanced) # Balanced sampling (switching between expert and policy data every update) is stateful
if cfg.algorithm == 'DRIL':
discriminator = SoftActor(state_size, action_size, cfg.imitation.discriminator)
elif cfg.algorithm == 'GAIL':
discriminator = GAILDiscriminator(state_size, action_size, cfg.imitation, cfg.reinforcement.discount)
elif cfg.algorithm == 'GMMIL':
discriminator = GMMILDiscriminator(state_size, action_size, cfg.imitation)
elif cfg.algorithm == 'PWIL':
discriminator = PWILDiscriminator(state_size, action_size, cfg.imitation, expert_memory, env.max_episode_steps)
elif cfg.algorithm == 'RED':
discriminator = REDDiscriminator(state_size, action_size, cfg.imitation)
if cfg.algorithm in ['DRIL', 'GAIL', 'RED']:
discriminator_optimiser = optim.AdamW(discriminator.parameters(), lr=cfg.imitation.learning_rate, weight_decay=cfg.imitation.weight_decay)
# Metrics
metrics = dict(train_steps=[], train_returns=[], test_steps=[], test_returns=[], test_returns_normalized=[], update_steps=[], predicted_rewards=[], alphas=[], entropies=[], Q_values=[])
score = [] # Score used for hyperparameter optimization
if cfg.check_time_usage: start_time = time.time() # Performance tracking
# Behavioural cloning pretraining
if cfg.bc_pretraining.iterations > 0:
expert_dataloader = iter(cycle(DataLoader(expert_memory, batch_size=cfg.training.batch_size, shuffle=True, drop_last=True)))
actor_pretrain_optimiser = optim.AdamW(actor.parameters(), lr=cfg.bc_pretraining.learning_rate, weight_decay=cfg.bc_pretraining.weight_decay) # Create separate pretraining optimiser
for _ in tqdm(range(cfg.bc_pretraining.iterations), leave=False):
expert_transitions = next(expert_dataloader)
behavioural_cloning_update(actor, expert_transitions, actor_pretrain_optimiser)
if cfg.algorithm == 'BC': # Return early if algorithm is BC
if cfg.check_time_usage: metrics['pre_training_time'] = time.time() - start_time
test_returns = evaluate_agent(actor, eval_env, cfg.evaluation.episodes)
test_returns_normalized = (np.array(test_returns) - normalization_min) / (normalization_max - normalization_min)
steps = [*range(0, cfg.steps, cfg.evaluation.interval)]
metrics['test_steps'], metrics['test_returns'], metrics['test_returns_normalized'] = [0], [test_returns], [list(test_returns_normalized)]
lineplot(steps, len(steps) * [test_returns], filename=f'{file_prefix}test_returns', title=f'{cfg.algorithm}: {cfg.env}')
torch.save(dict(actor=actor.state_dict()), f'{file_prefix}agent.pth')
torch.save(metrics, f'{file_prefix}metrics.pth')
env.close()
eval_env.close()
return np.mean(test_returns_normalized)
# Pretraining "discriminators"
if cfg.algorithm in ['DRIL', 'RED']:
expert_dataloader = iter(cycle(DataLoader(expert_memory, batch_size=cfg.training.batch_size, shuffle=True, drop_last=True)))
for _ in tqdm(range(cfg.imitation.pretraining.iterations), leave=False):
expert_transition = next(expert_dataloader)
if cfg.algorithm == 'DRIL':
behavioural_cloning_update(discriminator, expert_transition, discriminator_optimiser) # Perform behavioural cloning updates offline on policy ensemble (dropout version)
elif cfg.algorithm == 'RED':
target_estimation_update(discriminator, expert_transition, discriminator_optimiser) # Train predictor network to match random target network
with torch.inference_mode():
if cfg.algorithm == 'DRIL':
discriminator.set_uncertainty_threshold(expert_memory['states'], expert_memory['actions'], cfg.imitation.quantile_cutoff)
elif cfg.algorithm == 'RED':
discriminator.set_sigma(expert_memory['states'][:cfg.training.batch_size], expert_memory['actions'][:cfg.training.batch_size]) # Estimate on a minibatch for computational feasibility
if cfg.check_time_usage:
metrics['pre_training_time'] = time.time() - start_time
start_time = time.time()
if cfg.imitation.mix_expert_data == 'prefill_memory': memory.transfer_transitions(expert_memory) # Once pretraining is over, transfer expert transitions to agent replay memory
elif cfg.algorithm == 'PWIL':
if cfg.imitation.mix_expert_data != 'none':
with torch.inference_mode():
for i, transition in tqdm(enumerate(expert_memory), leave=False):
expert_memory.rewards[i] = discriminator.compute_reward(transition['states'].unsqueeze(dim=0), transition['actions'].unsqueeze(dim=0)) # Greedily calculate the reward for PWIL for expert data and rewrite memory
if transition['terminals'] or transition['timeouts']: discriminator.reset() # Reset the expert data for PWIL
if cfg.imitation.mix_expert_data == 'prefill_memory': memory.transfer_transitions(expert_memory) # Once rewards have been calculated, transfer expert transitions to agent replay memory
elif cfg.algorithm == 'GMMIL':
if cfg.imitation.mix_expert_data == 'prefill_memory': memory.transfer_transitions(expert_memory)
# Training
t, state, terminal, train_return = 0, env.reset(), False, 0
if cfg.algorithm in ['GAIL', 'RED']: discriminator.eval() # Set the "discriminator" to evaluation mode (except for DRIL, which explicitly uses dropout)
pbar = tqdm(range(1, cfg.steps + 1), unit_scale=1, smoothing=0)
for step in pbar:
# Collect set of transitions by running policy π in the environment
with torch.inference_mode():
action = actor(state).sample()
next_state, reward, terminal = env.step(action)
t += 1
train_return += reward
if cfg.algorithm == 'PWIL': reward = discriminator.compute_reward(state, action) # Greedily calculate the reward for PWIL
memory.append(step, state, action, reward, next_state, terminal and t != env.max_episode_steps, t == env.max_episode_steps) # True reward stored for SAC, should be overwritten by IL algorithms; if env terminated due to a time limit then do not count as terminal (store as timeout)
state = next_state
# Reset environment and track metrics on episode termination
if terminal: # If terminal (or timed out)
if cfg.imitation.absorbing and t != env.max_episode_steps: memory.wrap_for_absorbing_states() # Wrap for absorbing state if terminated without time limit
if cfg.algorithm == 'PWIL': discriminator.reset() # Reset the expert data for PWIL
# Store metrics and reset environment
metrics['train_steps'].append(step)
metrics['train_returns'].append([train_return])
pbar.set_description(f'Step: {step} | Return: {train_return}')
t, state, train_return = 0, env.reset(), 0
# Train agent and imitation learning component
if step >= cfg.training.start and step % cfg.training.interval == 0:
# Sample a batch of transitions
transitions, expert_transitions = memory.sample(cfg.training.batch_size), expert_memory.sample(cfg.training.batch_size)
if cfg.algorithm in ['AdRIL', 'DRIL', 'GAIL', 'GMMIL', 'RED']: # Note that PWIL predicts and stores rewards online during environment interaction
# Train discriminator
if cfg.algorithm == 'GAIL':
discriminator.train()
adversarial_imitation_update(actor, discriminator, transitions, expert_transitions, discriminator_optimiser, cfg.imitation)
discriminator.eval()
# Optionally, mix expert data into agent data for training
if cfg.imitation.mix_expert_data == 'mixed_batch' and cfg.algorithm != 'AdRIL': mix_expert_agent_transitions(transitions, expert_transitions)
# Predict rewards
states, actions, next_states, terminals, weights = transitions['states'], transitions['actions'], transitions['next_states'], transitions['terminals'], transitions['weights']
expert_states, expert_actions, expert_next_states, expert_terminals, expert_weights = expert_transitions['states'], expert_transitions['actions'], expert_transitions['next_states'], expert_transitions['terminals'], expert_transitions['weights'] # Note that using the entire dataset is prohibitively slow in off-policy case (for relevant algorithms)
with torch.inference_mode():
if cfg.algorithm == 'AdRIL':
discriminator.resample_and_relabel(transitions, expert_transitions, step, memory.num_trajectories, expert_memory.num_trajectories) # Uses a mix of expert and policy data and overwrites transitions (including rewards) inplace
elif cfg.algorithm == 'DRIL':
transitions['rewards'] = discriminator.predict_reward(states, actions)
elif cfg.algorithm == 'GAIL':
transitions['rewards'] = discriminator.predict_reward(**make_gail_input(states, actions, next_states, terminals, actor, cfg.imitation.discriminator.reward_shaping, cfg.imitation.discriminator.subtract_log_policy))
elif cfg.algorithm == 'GMMIL':
transitions['rewards'] = discriminator.predict_reward(states, actions, expert_states, expert_actions, weights, expert_weights)
elif cfg.algorithm == 'RED':
transitions['rewards'] = discriminator.predict_reward(states, actions)
# Perform a behavioural cloning update (optional)
if cfg.imitation.bc_aux_loss: behavioural_cloning_update(actor, expert_transitions, actor_optimiser)
# Perform a SAC update
log_probs, Q_values = sac_update(actor, critic, log_alpha, target_critic, transitions, actor_optimiser, critic_optimiser, temperature_optimiser, cfg.reinforcement.discount, entropy_target, cfg.reinforcement.polyak_factor)
# Save auxiliary metrics
if cfg.logging.interval > 0 and step % cfg.logging.interval == 0:
metrics['update_steps'].append(step)
metrics['predicted_rewards'].append(transitions['rewards'].numpy())
metrics['alphas'].append(log_alpha.exp().detach().numpy())
metrics['entropies'].append((-log_probs).numpy()) # Actions are sampled from the policy distribution, so "p" is already included
metrics['Q_values'].append(Q_values.numpy())
# Evaluate agent and plot metrics
if step % cfg.evaluation.interval == 0 and not cfg.check_time_usage:
test_returns = evaluate_agent(actor, eval_env, cfg.evaluation.episodes)
test_returns_normalized = (np.array(test_returns) - normalization_min) / (normalization_max - normalization_min)
score.append(np.mean(test_returns_normalized))
metrics['test_steps'].append(step)
metrics['test_returns'].append(test_returns)
metrics['test_returns_normalized'].append(list(test_returns_normalized))
lineplot(metrics['test_steps'], metrics['test_returns'], filename=f"{file_prefix}test_returns", title=f'{cfg.algorithm}: {cfg.env} Test Returns')
if len(metrics['train_returns']) > 0: # Plot train returns if any
lineplot(metrics['train_steps'], metrics['train_returns'], filename=f"{file_prefix}train_returns", title=f'Training {cfg.algorithm}: {cfg.env} Train Returns')
if cfg.logging.interval > 0 and len(metrics['update_steps']) > 0:
if cfg.algorithm != 'SAC': lineplot(metrics['update_steps'], metrics['predicted_rewards'], filename=f'{file_prefix}predicted_rewards', yaxis='Predicted Reward', title=f'{cfg.algorithm}: {cfg.env} Predicted Rewards')
lineplot(metrics['update_steps'], metrics['alphas'], filename=f'{file_prefix}sac_alpha', yaxis='Alpha', title=f'{cfg.algorithm}: {cfg.env} Alpha')
lineplot(metrics['update_steps'], metrics['entropies'], filename=f'{file_prefix}sac_entropy', yaxis='Entropy', title=f'{cfg.algorithm}: {cfg.env} Entropy')
lineplot(metrics['update_steps'], metrics['Q_values'], filename=f'{file_prefix}Q_values', yaxis='Q-value', title=f'{cfg.algorithm}: {cfg.env} Q-values')
if cfg.check_time_usage:
metrics['training_time'] = time.time() - start_time
if cfg.save_trajectories:
# Store trajectories from agent after training
_, trajectories = evaluate_agent(actor, eval_env, cfg.evaluation.episodes, return_trajectories=True, render=cfg.render)
torch.save(trajectories, f'{file_prefix}trajectories.pth')
# Save agent and metrics
torch.save(dict(actor=actor.state_dict(), critic=critic.state_dict(), log_alpha=log_alpha), f'{file_prefix}agent.pth')
if cfg.algorithm in ['DRIL', 'GAIL', 'RED']: torch.save(discriminator.state_dict(), f'{file_prefix}discriminator.pth')
torch.save(metrics, f'{file_prefix}metrics.pth')
env.close()
eval_env.close()
return np.mean(score)
if __name__ == '__main__':
main()