-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_Matlab2Julia.jl
537 lines (469 loc) · 17.9 KB
/
main_Matlab2Julia.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
using NLsolve
using CairoMakie
using Interpolations
using Trapz
using CSV
using DataFrames
using Test
using BenchmarkTools
#Helper functions
function ZrSaturation(T) # defining Zr saturation conditions
# Csat = 4.414e7 / exp(13352/T) / 2 # Watson 96, Eq 1, in ppm Zr for checking. (divide by 1),or mol Zr (divide by 2)
# Mfactor = 0.0000048*(T)^2 - 0.0083626*(T) + 4.8484463 # empirical relations from magma Fig.
# differentiation calc (file M_factorsforOleg.xlsx
Mfactor=1.62;
Csat=490000/exp(10108/T-1.16*(Mfactor-1)-1.48); # Boehnkeetal2013ChemGeol351,324 assuming 490000ppm in Zircon
# Mfactor = 1.3
# Csat = 490000 / exp(10108/T + 1.16*(Mfactor - 1) - 1.48) # Boehnkeetal2013ChemGeol351,324 assuming 490,000 ppm in Zircon
# Csat = 490000 / (exp(12900/T - 0.85*(Mfactor - 1) - 3.80)) # Watson and Harrison 1983
# for Monazite (Does not work for some reason):
# H2O = 1wt% use below expression (Table 4, Rapp Watson 86)
# Csat = 0.0000190 * exp(0.0143872 * T)
# Csat = 600000 / (exp(-0.0144 * T + 24.177))
# H2O = 6wt% use below expression (Table 4, Rapp Watson 86)
# Csat = 0.00012 * exp(0.01352 * T)
# Csat = 600000 / (exp(-0.0135 * T + 22.296))
# for Apatite:
# SiO2 = 0.68
# Csat = 430000 / exp((-4800 + 26400 * SiO2) / T + 3.10 - 12.4 * SiO2) # Harrison Watson 84
return Csat
end
function DiffusionCoefficient(T, x, DGfZr) # defining Zr diffusion coefficients in melts as f(T,X2O)
# global DGfZr
theta = 1000 / T
lnD=-(11.4*x+3.13)/(0.84*x+1)-(21.4*x+47)/(1.06*x+1)*theta; # best fit of Zr Diff coefficients (several workers) and WH83 dependence on XH2O
Dif=exp(lnD)*1e4*365*24*3600; # in cm2/y
mass=[89.9047026,90.9056439,91.9050386,93.9063148,95.908275];
bet = 0.05 # +0.059
Di = zeros(6)
Di[1:5]=Dif*(mass[1]./mass).^bet;
# lnHf = -3.52 - 231.09 / 8.31 / theta
# lnD_Hf = (-8.620340372 * T - 42705.17449 - .318918919 * x * T + 4049.500765 * x) / T
Di[6] = Dif[1] * DGfZr # exp(lnD_Hf) * 1e4 * 365 * 24 * 3600 # in cm2/y
return Di
end
@test sum(DiffusionCoefficient((750 + 273.15), 2, (0.5))) ≈ 6.60069e-5 atol=1e-4
function kdHf(T, par)
X = 1000. / T
KD_Hf = exp(11.29e3 / T - 2.275) # true Kd_Hf from this model 2022
KD_Ti = exp(-11.05e3 / T + 6.06) # Kd for Ti zircon/melt based on Ferry and Watson 2007
KD_Y = exp(19.47 * X - 13.04)
KD_U = exp(15.32 * X - 9.17) #U
KD_Th = exp(13.02e3 / T -8.54) # Kd for Th
Csat = ZrSaturation(T)
KD_Sm = (13.338 * Csat^(-0.622))
KD_Dy = (2460.0 * Csat^(-0.867))
KD_Yb = (33460. * Csat^(-1.040))
KD_P = exp(7.646 * X - 5.047)
KD = get(
Dict(
"Hf" => KD_Hf,
"Y" => KD_Y,
"U" => KD_U,
"P" => KD_P,
"Sm" => KD_Sm,
"Dy" => KD_Dy,
"Yb" => KD_Yb,
"Th" => KD_Th,
"Ti" => KD_Ti
),
par["Trace"],
nothing
)
return KD
end
@test kdHf(1023.15, Dict("Trace" => "Hf")) ≈ 6371.245 atol=1e-3
@btime kdHf($1023.15, $Dict("Trace" => "Hf"))
function bc(X, par)
ct = par["alpha"] .* X + par["beta"]
grad = -par["D"] .* (ct - X)
Eq = zeros(6)
Eq[1] = sum(X[1:5]) - par["csat"]
@. Eq[2:5] = grad[2:5] * X[1] - X[2:5] * grad[1]
# @. Eq[2:5] = grad[2:5] * X[1] - X[2:5]' * grad[1] #matlab version
KD_Hf = kdHf(par["T"], par)
CHfs = X[6] * KD_Hf
Cz = par["Cz"] * X[1] / par["csat"]
Eq[6] = Cz * grad[6] - grad[1] * (CHfs - X[6])
return Eq
end
function mf_magma(Tk)
T = Tk - 273.15
t2 = T .* T
t7 = exp.(0.961026371384066e3 .- 0.3590508961e1 .* T .+ 0.4479483398e-2 .* t2 .- 0.1866187556e-5 .* t2 .* T)
CF = 0.1e1 ./ (0.1e1 .+ t7)
return CF
end
@btime mf_magma($1000)
@test mf_magma(1000) ≈ 0.23081 atol = 1e-4
function mf_rock(T)
t2 = T .* T
t7 = exp.(0.961026371384066e3 .- 0.3590508961e1 .* T .+ 0.4479483398e-2 .* t2 .- 0.1866187556e-5 .* t2 .* T)
CF = 0.1e1 ./ (0.1e1 .+ t7)
return CF
end
@btime mf_rock($1000)
@test mf_rock(1000) ≈ 0.99999 atol = 1e-4
function progonka(C0,dt,it,parameters)
global n, R,Dplag, ZrPl, MinCore, time, tscale, S0
global A, B, D, F, alpha, beta, Xs, Temp, MeltFrac, XH2O, Tsolidus, V, W, Csupsat, Dscale, UCR, CZirc, S, ZircNuc, Czl, Czh, Dflux
S=(Xs^3+MeltFrac[it]*(1-Xs^3))^(1/3); # rad of the melt shell
Dif=DiffusionCoefficient(Temp[it],XH2O, DGfZr)/Dscale; #see below Diff Coeff dependednt on water and T in cm2/s
Csat=ZrSaturation(Temp[it]);
Czl=CZirc*C0[1,1]/Csat;
Czh=CZirc*C0[1,4]/Csat;
Dflux[1:5]=Dif[1:5].*(C0[2,1:5] - C0[1,1:5])/(R[2]-R[1])/(S-Xs);
V=-sum(Dflux)/(CZirc*parameters["RhoZrM"]-Csat);
if it>1
diffF=(MeltFrac[it+1]-MeltFrac[it-1])/dt/2;
else
diffF=(MeltFrac[it+1]-MeltFrac[it])/dt;
end
W=(1/3)*(diffF*(1-Xs^3)-3*Xs^2*V*(MeltFrac[it]-1))/((-MeltFrac[it]+1)*Xs^3+MeltFrac[it])^(2/3);
dC=sum(C0[n,1:5])-Csat;
Ccr=parameters["Crit"];
delta=parameters["delta"];
Dpmax=parameters["Kmax"];
Dpmin=parameters["Kmin"];
t4 = tanh(delta * (dC - Ccr));
t7 = tanh(delta * Ccr);
@. Dplag[1:5] = 0.1e1 / (0.1e1 + t7) * (t4 * (Dpmax - Dpmin) + Dpmax * t7 + Dpmin);
Dplag[6]=parameters["Ktrace"];
@. D[n,:]=-Dif[:]-W*(R[n]-R[n-1])*(S-Xs)*(1-Dplag[:]);
@. A[n,:]=Dif[:];
@. F[n,:]=0;
# Coefficients for Thomas method
s = Xs
for j in 1:6
for i in 2:n-1
psi1 = R[i-1]
psi2 = R[i]
psi3 = R[i+1]
t1 = Dif[j] * dt
t5 = (psi1 * S - psi1 * s + s) ^ 2
t6 = psi2 - psi1
t8 = t5 / t6
t12 = S * psi2
t14 = ((-psi2 + 1) * s + t12) ^ 2
t15 = S - s
t20 = (-W + V) * psi2 - V
A[i,j] = -t14 * t15 * dt * psi2 * t20 - t1 * t8
t25 = (-psi2 * s + s + t12) ^ 2
t28 = t25 / (psi3 - psi2)
B[i,j] = -t1 * t28
t32 = -t15
t33 = t32 ^ 2
t34 = -t6
t38 = (t32 * psi2 - s) ^ 2
D[i,j] = -t1 * (-t28 - t8) - t33 * t34 * t38 - t20 * psi2 * dt * t38 * t32
t44 = t15 ^ 2
t48 = (t15 * psi2 + s) ^ 2
F[i,j] = -t34 * t44 * t48 * C0[i,j]
end
end
# Forward Thomas path
alpha[n,:] = -A[n,:] ./ D[n,:]
beta[n,:] = F[n,:] ./ D[n,:]
for i in n-1:-1:2
alpha[i,:] = -A[i,:] ./ (B[i,:] .* alpha[i+1,:] + D[i,:])
beta[i,:] = (F[i,:] - B[i,:] .* beta[i+1,:]) ./ (B[i,:] .* alpha[i+1,:] + D[i,:])
end
# Boundary conditions
parb = Dict()
parb["D"] = Dif[:]
parb["csat"] = Csat
parb["alpha"] = alpha[2,:]
parb["beta"] = beta[2,:]
parb["T"] = Temp[it]
parb["Cz"] = CZirc
parb["Trace"] = parameters["Trace"]
f = (X) -> bc(X, parb) # function of dummy variable y
result = NLsolve.nlsolve(f, C0[1,:], method = :trust_region) #NLsolve doesnt provide the Levenberg-Marquart method, but trust_region comes close to it
out = result.zero # solution vector
fval = result.residual_norm # residual vector
exflag = result.f_converged # convergence flag (true if converged)
if exflag <= 0
println(fval)
end
C[1,:] = out[:]
# Backward Thomas path
for i in 1:n-1
C[i+1,:] = C[i,:] .* alpha[i+1,:] + beta[i+1,:]
end
return C, Czl, Czh, Csat, Dif, S
end
function TemperatureHistory_m_erupt(tr, Tr, par)
if isempty(tr)
nt = par["nt"]
ti = range(0, stop=par["tfin"], length=nt)
Ti = range(par["Tsat"], stop=par["Tend"]+273.15, length=nt)
CrFrac1 = mf_rock(Ti .- 273.15)
else
istart = findfirst(x -> x > 0, Tr)
Tr[istart-1] = 950 + 273.15
tr[istart-1] = tr[istart] - 5
dT = 0.05
if minimum(mf_rock(Tr)) < 0.01
println("no melting")
return [], [], []
end
if minimum(Tr) - Tsat > 0
println("high temperature")
return [], [], []
end
time = tr
Temp = Tr
try
it = findfirst(x -> x < Tsat, Temp)
time[it-1] = time[it] - (Temp[it] - Tsat) / (Temp[it] - Temp[it-1]) * 5
Temp[it-1] = Tsat
time1 = time[it-1:end]
Temp1 = Temp[it-1:end]
nt = length(time1)
s = zeros(Temp1)
for i in 2:nt
s[i] = s[i-1] + abs(Temp1[i] - Temp1[i-1])
end
ni = floor(s[nt] / dT)
si = range(s[1], stop=s[nt], length=ni)
ti = interp1(s, time1, si)
Ti = interp1(time1, Temp1, ti)
catch ME
println("wrong Thist for sample: ", sampnum, ", ", ME.message)
return [], [], []
end
CrFrac1 = mf_rock(Ti .- 273.15)
end
return ti, Ti, CrFrac1
end
# function ZirconIsotopeDiffusion()
Runname = "Test"
!isdir("Results") && mkpath("Results")
# parameters for simulations
CbulkZr = 100
tyear = 3600*24*365
iplot = 1 # plot results
n = 500 # number of points in radial mesh. Can be changed by user depends on desired accuracy
nt = 500
CZirc = 490000.0 # zirconium concentration in zircon, ppm
XH2O = 2 # initial water content in melt, required for diffusion coefficient simulations.
Tsolidus = 400 + 273 # arbitrary solidus temperature for phase diagram used
Csupsat = 3 # ppm supersaturation to cause nucleation of a new crystal upon cooling
UCR = 1 # Critical concentration for microZircon nucleation on major minerals
ZircNuc = 1e-4 # Zircon stable nuclei in cm
L = 0.1 # 20e-4*(CZirc/CbulkZr)^(1./3.); radius of melt cell
DGfZr = 0.5 # ratio of diffusion coefficients of Hf to Zr; change for other element of interest
# Solve for Tsat
function equation!(F, T)
F[1] = ZrSaturation(T[1])*mf_rock(T[1]-273.15) - CbulkZr
end
result = nlsolve(equation!, [1000.0])
Tsat = result.zero[1]
# global n R A B D F alpha1 beta Xs UCR ZrPl Tsat CbulkZr MinCore DGfZr S0
# global Dplag Temp MeltFrac time XH2O Tsolidus Csupsat V Dscale tscale L S W t CZirc CPl ZircNuc Czl Czh
# parameters for the simulation
parameters = Dict(
"Tsat" => Tsat, # Starting at saturation
"Tend" => 695, # final temperature, C
"tfin" => 1500, # final time
"Cbulk" => CbulkZr,
"RhoZrM" => 4.7/2.3, # Ratio of zircon to melt density
"Kmin" => 0.1, # Parameters for zirconiun partition coefficient in major phase
"Kmax" => 0.1,
"Crit" => 30,
"delta" => 0.2,
"Ktrace" => 0.1, # trace partition coefficient in major phase.
"Trace" => "Hf",
"XH20" => XH2O,
"L" => L,
"DGfZr" => DGfZr, # diffusion coefficient ratio
"nt" => nt
)
tr = []
Tr = []
time, Temp, MeltFrac = TemperatureHistory_m_erupt(tr, Tr, parameters)
# Allocations (formerly matrixes function)
C0 = zeros(n, 6)
C = zeros(n, 6)
A = zeros(n, 6)
B = zeros(n, 6)
D = zeros(n, 6)
F = zeros(n, 6)
alpha = zeros(n, 6)
beta = zeros(n, 6)
x = range(0, 1, n)
VV = zeros(nt, 1) # arrays for future storage of data and plotting
XXs = zeros(nt, 1)
RRd = zeros(nt, 1)
tt = zeros(nt, 1)
UU = zeros(nt, 1) # array for undersaturation from first to last distance length point
Tsave = zeros(nt, 1)
ZrPls = zeros(nt, 1)
Xp_sav = zeros(nt, 1)
CC = zeros(nt, n, 6);
Dplag = zeros(1,6)
Zcomp = zeros(1, nt)
ZrHF = zeros(1, nt)
CZircon = zeros(1, 5)
Cplag = zeros(1, 5)
CintS = zeros(n-1, 5)
Cint = zeros(1,5)
Dflux = zeros(1, 5)
Zcompl = zeros(1, nt-1)
Zcomph = zeros(1, nt-1)
Melndelta = zeros(1, nt-1)
# Scaling
tfin = time[end] # total time in years of the process
# SCALING-----------------
Ds = DiffusionCoefficient((750 + 273.15), XH2O, DGfZr)
Dscale = Ds[1]
tscale = L^2 / Dscale # dimensionless scale for the time
time = time ./ tscale
# nt = L(time) # this is obsolete as the nt does not change with scaling
# END:SCALING-----------------
# Initial Conditions
t = time[1] / tscale
ZirconRadius = 2e-4
Xs = ZirconRadius / L
ZircNuc = ZircNuc / L
S = (Xs^3 + MeltFrac[1] * (1 - Xs^3))^(1/3)
S0 = S
dt = time[2] - time[1]
W = 0
V = 0
C0[:, 1] .= ZrSaturation(Temp[1]) * 0.5145
C0[:, 2] .= ZrSaturation(Temp[1]) * 0.1122
C0[:, 3] .= ZrSaturation(Temp[1]) * 0.1715
C0[:, 4] .= ZrSaturation(Temp[1]) * 0.1738
C0[:, 5] .= ZrSaturation(Temp[1]) * 0.0280
C0[:, 6] .= CZirc / kdHf(Temp[1], parameters) / 70
# C0[1:n,6] = 50 # PHOSHPORUS< CHANGEHF melt from Bachmann etal JPet 2002.
Dplag[1:5] .= 0.1
Dplag[6] = 0.1
sleep(1e-5)
CC[1, 1:n, 1:5] = C0[1:n, 1:5]
Tsave[1] = Temp[1] - 273.15
XXs[1] = Xs * 1e4 * L
RRd[1] = S * 1e4 * L
ZrPls[1] = XXs[1] # zircon radius in um
UU[1] = C0[1, 1]
tt[1] = time[1] * tscale
Zcomp[1,1] = C0[1, 4] / C0[1, 1]
ZrHF[1,1] = CZirc / kdHf(Temp[1], parameters) / C0[1, 6]
# Zcomp[1] = C0[1, 4] / C0[1, 1] #matlab version
# ZrHF[1] = CZirc / kdHf(Temp[1], par) / C0[1, 6] #matlab version
Melndelta[1,1] = Zcomp[1,1]
R = range(0, stop=1, length=n)
rr = range(0, stop=1, length=n)
CZircon[1:5] = 4 * π * CZirc * C0[1, 1:5] / ZrSaturation(Temp[1]) * ZirconRadius^3 / 3
Cplag[1:5] .= 0
CintS[1, 1:5] = CZircon[1:5] + 4 * π * C0[1, 1:5] * (S^3 - ZirconRadius^3) / 3
global n, R,Dplag, ZrPl, MinCore, time, tscale, S0
global A, B, D, F, alpha, beta, Xs, Temp, MeltFrac, XH2O, Tsolidus, V, W, Csupsat, Dscale, UCR, CZirc, S, ZircNuc, Czl, Czh, Dflux
# MAIn LOOP in time _______________________
# Main loop
for i = 2:nt-1
# for i = 2:100
if MeltFrac[i] > 0.01
C, Czl, Czh, Csat, Dif, S = progonka(C0, dt, i, parameters)
dt = time[i] - time[i-1]
C0 = C
else
V = 0
W = 0
end
rr = R * (S - Xs) .+ Xs
Csat = ZrSaturation(Temp[i])
CZircon[1:5] = CZircon[1:5] - CZirc * C[1, 1:5] / Csat * 4 * π * Xs^2 * V * dt
Cplag[1:5] = Cplag[1:5] - C[end, 1:5] .* Dplag[1:5] * 4 * π * S^2 * W * dt
Cint[1:5] .= 0
for ik = 2:n
Cint[1:5] = Cint[1:5] + (C[ik-1, 1:5] * rr[ik-1]^2 + C[ik, 1:5] * rr[ik]^2) / 2 * (rr[ik] - rr[ik-1])
end
Cint = 4 * π * Cint + parameters["RhoZrM"] * CZircon + Cplag
CintS[i, 1:5] = Cint[1:5]
if iplot == 1 && i % floor(nt / 10) == 0
fig = Figure(size = (800, 800), backgroundcolor = :white)
# Subplots
ax1 = Axis(fig[1, 1], xlabel = "Distance, um", ylabel = L"\delta^{94/90}Zr")
ax2 = Axis(fig[2, 1], xlabel = "Distance )", ylabel = "Zr/Hf")
rr = R * (S - Xs) .+ Xs
# Plot data (replace `data` with your actual data)
lines!(ax1, rr * L * 1e4, (C[:, 4] .* 0.5145 ./ C[:, 1] ./ 0.1738 .- 1) .* 1000, linewidth = 1.5)
lines!(ax2, rr * L * 1e4, (sum(C[:, 1:5], dims = 2) ./ C[:, 6])[:], linewidth = 1.5)
display(fig)
end
t += dt
rr = R * (S - Xs) .+ Xs
Cl = trapz(rr[:,1], rr[:,1].^2 .* C[:, 1])
Ch = trapz(rr, rr.^2 .* C[:, 4])
Xs = max(ZircNuc, Xs - V * dt)
S0 = S
XXs[i] = Xs * 1e4 * L # zircon radius in um
RRd[i] = S * 1e4 * L # melt cell radius in um
VV[i] = -V * L * 1e4 / tscale # array of dissolution rate
tt[i] = time[i] * tscale
UU[i] = C[1] - ZrSaturation(Temp[i])
Tsave[i] = Temp[i] - 273
ZrPls[i] = minimum(XXs[1:i, 1])
Zcompl[i] = Czl / CZirc
Zcomph[i] = Czh / CZirc
Zcomp[1,i] = C[1, 4] / C[1, 1]
Melndelta[1,i] = Ch / Cl
ZrHF[i] = CZirc / kdHf(Temp[i], parameters) / C0[1, 6]
CC[i, 1:n, 1:6] = C0[1:n, 1:6]
end
# Plot results (if iplot is set)
if iplot == 1
fig = Figure(size = (800, 800), backgroundcolor = :white)
# Subplots
ax1 = Axis(fig[1, 1], xlabel = "Time (years)", ylabel = "Zr radius")
ax2 = Axis(fig[1, 2], xlabel = "Time (years)", ylabel = "Temperature T, C")
ax3 = Axis(fig[2, 1], xlabel = "Distance", ylabel = L"Growth Rate, μm/a^{-1}")
ax4 = Axis(fig[2, 2], xlabel = "Distance, um", ylabel = L"\delta^{94/90}Zr")
ax5 = Axis(fig[3, 1], xlabel = "Distance ", ylabel = "Zr/Hf")
# Plot data (replace `data` with your actual data)
lines!(ax1, tt[1:end-1]/1e3, XXs[1:end-1], color = :blue)
lines!(ax2, tt[1:end-1]/1e3, Tsave[1:end-1], color = :blue)
lines!(ax3, XXs[1:end-1], VV[1:end-1], color = :blue)
DelZr = zeros(1,nt)
DelZr[2:end-1] = (Zcomp[2:end-1] ./ Zcomp[2] .- 1) * 1000
DelMlt = (Melndelta[2:end-1] ./ Melndelta[2] .- 1) * 1000
lines!(ax4, XXs[1:end-1], DelZr[1:end-1], color = :blue)
lines!(ax5, XXs[2:end-1], ZrHF[2:end-1], color = :blue)
display(fig)
end
# Save results
# Print the figure to a PDF file
CairoMakie.save("Results/Test.pdf", fig)
i = nt - 2
# Convert array to DataFrame
Rsave = DataFrame(time_ka = tt[1:i-1] / 1e3, Rad_um = XXs[1:i-1], Gr_rate_mm_a = VV[1:i-1], Temp_C = Tsave[1:i-1], DelZr = DelZr[1:i-1], DelMlt = DelMlt[1:i-1], ZrHf = ZrHF[1:i-1])
# Write DataFrame to CSV file
CSV.write("Results/$Runname.csv", Rsave)
# Append structure to CSV file
par = DataFrame(fname = "$Runname")
if !isfile("Results/summary.csv")
wwar = true
else
wwar = false
end
if wwar
CSV.write("Results/summary.csv", par)
else
existing = CSV.read("Results/summary.csv", DataFrame)
append!(existing, par)
CSV.write("Results/summary.csv", existing)
end
# end
#Matlab
# >> sum(C(1,:))
# ans = 129.4123
@test sum(C[1,:]) ≈ 129.4123 atol=1e-4
# >> max(XXs)
# ans = 19.4589
@test maximum(XXs) ≈ 19.4589 atol=1e-4
# >> min(DelZr)
# ans = -2.0528
# Julia = -2.5351 (tolerance??)
@test minimum(DelZr[2:end-1]) ≈ -2.0528 atol=1e-3