-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHH_helper_functions.py
228 lines (183 loc) · 5.83 KB
/
HH_helper_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import numpy as np
from scipy import stats as spstats
def syn_current(duration=120, dt=0.01, t_on=10, curr_level=5e-4, seed=None):
duration = duration
t_off = duration - t_on
t = np.arange(0, duration + dt, dt)
# external current
A_soma = np.pi * ((70.0 * 1e-4) ** 2) # cm2
I = np.zeros_like(t)
I[int(np.round(t_on / dt)) : int(np.round(t_off / dt))] = (
curr_level / A_soma
) # muA/cm2
return I, t_on, t_off, dt, t, A_soma
def HHsimulator(V0, params, dt, t, I, seed=None):
"""Simulates the Hodgkin-Huxley model for a specified time duration and current
Parameters
----------
V0 : float
Voltage at first time step
params : np.array, 1d of length dim_param
Parameter vector
dt : float
Timestep
t : array
Numpy array with the time steps
I : array
Numpy array with the input current
seed : int
"""
gbar_Na = params[0, 0] # mS/cm2
gbar_Na.astype(float)
gbar_K = params[0, 1] # mS/cm2
gbar_K.astype(float)
# fixed parameters
g_leak = 0.1 # mS/cm2
gbar_M = 0.07 # mS/cm2
tau_max = 6e2 # ms
Vt = -60.0 # mV
nois_fact = 0.1 # uA/cm2
E_leak = -70.0 # mV
C = 1.0 # uF/cm2
E_Na = 53 # mV
E_K = -107 # mV
tstep = float(dt)
if seed is not None:
rng = np.random.RandomState(seed=seed)
else:
rng = np.random.RandomState()
####################################
# kinetics
def efun(z):
if np.abs(z) < 1e-4:
return 1 - z / 2
else:
return z / (np.exp(z) - 1)
def alpha_m(x):
v1 = x - Vt - 13.0
return 0.32 * efun(-0.25 * v1) / 0.25
def beta_m(x):
v1 = x - Vt - 40
return 0.28 * efun(0.2 * v1) / 0.2
def alpha_h(x):
v1 = x - Vt - 17.0
return 0.128 * np.exp(-v1 / 18.0)
def beta_h(x):
v1 = x - Vt - 40.0
return 4.0 / (1 + np.exp(-0.2 * v1))
def alpha_n(x):
v1 = x - Vt - 15.0
return 0.032 * efun(-0.2 * v1) / 0.2
def beta_n(x):
v1 = x - Vt - 10.0
return 0.5 * np.exp(-v1 / 40)
# steady-states and time constants
def tau_n(x):
return 1 / (alpha_n(x) + beta_n(x))
def n_inf(x):
return alpha_n(x) / (alpha_n(x) + beta_n(x))
def tau_m(x):
return 1 / (alpha_m(x) + beta_m(x))
def m_inf(x):
return alpha_m(x) / (alpha_m(x) + beta_m(x))
def tau_h(x):
return 1 / (alpha_h(x) + beta_h(x))
def h_inf(x):
return alpha_h(x) / (alpha_h(x) + beta_h(x))
# slow non-inactivating K+
def p_inf(x):
v1 = x + 35.0
return 1.0 / (1.0 + np.exp(-0.1 * v1))
def tau_p(x):
v1 = x + 35.0
return tau_max / (3.3 * np.exp(0.05 * v1) + np.exp(-0.05 * v1))
####################################
# simulation from initial point
V = np.zeros_like(t) # voltage
n = np.zeros_like(t)
m = np.zeros_like(t)
h = np.zeros_like(t)
p = np.zeros_like(t)
V[0] = float(V0)
n[0] = n_inf(V[0])
m[0] = m_inf(V[0])
h[0] = h_inf(V[0])
p[0] = p_inf(V[0])
for i in range(1, t.shape[0]):
tau_V_inv = (
(m[i - 1] ** 3) * gbar_Na * h[i - 1]
+ (n[i - 1] ** 4) * gbar_K
+ g_leak
+ gbar_M * p[i - 1]
) / C
V_inf = (
(m[i - 1] ** 3) * gbar_Na * h[i - 1] * E_Na
+ (n[i - 1] ** 4) * gbar_K * E_K
+ g_leak * E_leak
+ gbar_M * p[i - 1] * E_K
+ I[i - 1]
+ nois_fact * rng.randn() / (tstep**0.5)
) / (tau_V_inv * C)
V[i] = V_inf + (V[i - 1] - V_inf) * np.exp(-tstep * tau_V_inv)
n[i] = n_inf(V[i]) + (n[i - 1] - n_inf(V[i])) * np.exp(-tstep / tau_n(V[i]))
m[i] = m_inf(V[i]) + (m[i - 1] - m_inf(V[i])) * np.exp(-tstep / tau_m(V[i]))
h[i] = h_inf(V[i]) + (h[i - 1] - h_inf(V[i])) * np.exp(-tstep / tau_h(V[i]))
p[i] = p_inf(V[i]) + (p[i - 1] - p_inf(V[i])) * np.exp(-tstep / tau_p(V[i]))
return np.array(V).reshape(-1, 1)
def calculate_summary_statistics(x):
"""Calculate summary statistics
Parameters
----------
x : output of the simulator
Returns
-------
np.array, summary statistics
"""
I, t_on, t_off, dt, t, A_soma = syn_current()
n_mom = 4
n_summary = 7
n_summary = np.minimum(n_summary, n_mom + 3)
t = x["time"]
dt = x["dt"]
# initialise array of spike counts
v = np.array(x["data"])
# put everything to -10 that is below -10 or has negative slope
ind = np.where(v < -10)
v[ind] = -10
ind = np.where(np.diff(v) < 0)
v[ind] = -10
# remaining negative slopes are at spike peaks
ind = np.where(np.diff(v) < 0)
spike_times = np.array(t)[ind]
spike_times_stim = spike_times[(spike_times > t_on) & (spike_times < t_off)]
# number of spikes
if spike_times_stim.shape[0] > 0:
spike_times_stim = spike_times_stim[
np.append(1, np.diff(spike_times_stim)) > 0.5
]
# resting potential and std
rest_pot = np.mean(x["data"][t < t_on])
rest_pot_std = np.std(x["data"][int(0.9 * t_on / dt) : int(t_on / dt)])
# moments
std_pw = np.power(
np.std(x["data"][(t > t_on) & (t < t_off)]), np.linspace(3, n_mom, n_mom - 2)
)
std_pw = np.concatenate((np.ones(1), std_pw))
moments = (
spstats.moment(
x["data"][(t > t_on) & (t < t_off)], np.linspace(2, n_mom, n_mom - 1)
)
/ std_pw
)
# concatenation of summary statistics
sum_stats_vec = np.concatenate(
(
np.array([spike_times_stim.shape[0]]),
np.array(
[rest_pot, rest_pot_std, np.mean(x["data"][(t > t_on) & (t < t_off)])]
),
moments,
)
)
sum_stats_vec = sum_stats_vec[0:n_summary]
return sum_stats_vec