-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathdemo.py
167 lines (157 loc) · 5.4 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import os
import torch
import torch.nn as nn
import torch.optim as optim
import torch.backends.cudnn as cudnn
import torch.nn.init as init
import argparse
from torch.autograd import Variable
import torch.utils.data as data
from data import COCODetection, VOCDetection, detection_collate, BaseTransform, preproc
from layers.modules import MultiBoxLoss, HSDMultiBoxLoss
from layers.functions import Detect
from utils.nms_wrapper import nms, soft_nms
from configs.config import cfg, cfg_from_file, VOC_CLASSES, COCO_CLASSES
from utils.box_utils import draw_rects
import numpy as np
import time
import os
import sys
import pickle
import datetime
from models.model_builder import SSD
import yaml
import cv2
def arg_parse():
parser = argparse.ArgumentParser(
description='Single Shot MultiBox Detection')
parser.add_argument(
"--images",
dest='images',
help="Image / Directory containing images to perform detection upon",
default="images",
type=str)
parser.add_argument(
'--weights',
default='weights/ssd_darknet_300.pth',
type=str,
help='Trained state_dict file path to open')
parser.add_argument(
'--cfg',
dest='cfg_file',
required=True,
help='Config file for training (and optionally testing)')
parser.add_argument(
'--save_folder',
default='eval/',
type=str,
help='File path to save results')
parser.add_argument(
'--num_workers',
default=8,
type=int,
help='Number of workers used in dataloading')
parser.add_argument(
'--retest', default=False, type=bool, help='test cache results')
args = parser.parse_args()
return args
def im_detect(img, net, detector, transform, thresh=0.01):
with torch.no_grad():
t0 = time.time()
w, h = img.shape[1], img.shape[0]
x = transform(img)[0].unsqueeze(0)
x = x.cuda()
t1 = time.time()
output = net(x)
boxes, scores = detector.forward(output)
t2 = time.time()
max_conf, max_id = scores[0].topk(1, 1, True, True)
pos = max_id > 0
if len(pos) == 0:
return np.empty((0, 6))
boxes = boxes[0][pos.view(-1, 1).expand(len(pos), 4)].view(-1, 4)
scores = max_conf[pos].view(-1, 1)
max_id = max_id[pos].view(-1, 1)
inds = scores > thresh
if len(inds) == 0:
return np.empty((0, 6))
boxes = boxes[inds.view(-1, 1).expand(len(inds), 4)].view(-1, 4)
scores = scores[inds].view(-1, 1)
max_id = max_id[inds].view(-1, 1)
c_dets = torch.cat((boxes, scores, max_id.float()), 1).cpu().numpy()
img_classes = np.unique(c_dets[:, -1])
output = None
flag = False
for cls in img_classes:
cls_mask = np.where(c_dets[:, -1] == cls)[0]
image_pred_class = c_dets[cls_mask, :]
keep = nms(image_pred_class, cfg.TEST.NMS_OVERLAP, force_cpu=True)
keep = keep[:50]
image_pred_class = image_pred_class[keep, :]
if not flag:
output = image_pred_class
flag = True
else:
output = np.concatenate((output, image_pred_class), axis=0)
output[:, 0:2][output[:, 0:2] < 0] = 0
output[:, 2:4][output[:, 2:4] > 1] = 1
scale = np.array([w, h, w, h])
output[:, :4] = output[:, :4] * scale
t3 = time.time()
print("transform_t:", round(t1 - t0, 3), "detect_time:",
round(t2 - t1, 3), "nms_time:", round(t3 - t2, 3))
return output
def main():
global args
args = arg_parse()
cfg_from_file(args.cfg_file)
bgr_means = cfg.TRAIN.BGR_MEAN
dataset_name = cfg.DATASETS.DATA_TYPE
batch_size = cfg.TEST.BATCH_SIZE
num_workers = args.num_workers
if cfg.DATASETS.DATA_TYPE == 'VOC':
trainvalDataset = VOCDetection
classes = VOC_CLASSES
top_k = 200
else:
trainvalDataset = COCODetection
classes = COCO_CLASSES
top_k = 300
valSet = cfg.DATASETS.VAL_TYPE
num_classes = cfg.MODEL.NUM_CLASSES
save_folder = args.save_folder
if not os.path.exists(save_folder):
os.mkdir(save_folder)
torch.set_default_tensor_type('torch.cuda.FloatTensor')
cfg.TRAIN.TRAIN_ON = False
net = SSD(cfg)
checkpoint = torch.load(args.weights)
state_dict = checkpoint['model']
from collections import OrderedDict
new_state_dict = OrderedDict()
for k, v in state_dict.items():
head = k[:7]
if head == 'module.':
name = k[7:] # remove `module.`
else:
name = k
new_state_dict[name] = v
net.load_state_dict(new_state_dict)
detector = Detect(cfg)
img_wh = cfg.TEST.INPUT_WH
ValTransform = BaseTransform(img_wh, bgr_means, (2, 0, 1))
input_folder = args.images
thresh = cfg.TEST.CONFIDENCE_THRESH
for item in os.listdir(input_folder):
img_path = os.path.join(input_folder, item)
print(img_path)
img = cv2.imread(img_path)
dets = im_detect(img, net, detector, ValTransform, thresh)
draw_img = draw_rects(img, dets, classes)
out_img_name = "output_" + item[:-4] + '_hsd'+item[-4:]
save_path = os.path.join(save_folder, out_img_name)
cv2.imwrite(save_path, img)
if __name__ == '__main__':
st = time.time()
main()
print("final time", time.time() - st)