-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathfinetune.py
197 lines (161 loc) · 6.91 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
from __future__ import print_function
import argparse
import os
import random
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data
from torch.autograd import Variable
import torch.nn.functional as F
import skimage
import skimage.io
import skimage.transform
import numpy as np
import time
import math
from dataloader import KITTIloader2015 as ls
from dataloader import KITTILoader as DA
import copy
from models import *
parser = argparse.ArgumentParser(description='PSMNet')
parser.add_argument('--maxdisp', type=int ,default=192,
help='maxium disparity')
parser.add_argument('--model', default='stackhourglass',
help='select model')
parser.add_argument('--datatype', default='2015',
help='datapath')
parser.add_argument('--datapath', default='/media/jiaren/ImageNet/data_scene_flow_2015/training/',
help='datapath')
parser.add_argument('--epochs', type=int, default=300,
help='number of epochs to train')
parser.add_argument('--loadmodel', default='./trained/submission_model.tar',
help='load model')
parser.add_argument('--savemodel', default='./',
help='save model')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='enables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
if args.datatype == '2015':
from dataloader import KITTIloader2015 as ls
elif args.datatype == '2012':
from dataloader import KITTIloader2012 as ls
all_left_img, all_right_img, all_left_disp, test_left_img, test_right_img, test_left_disp = ls.dataloader(args.datapath)
TrainImgLoader = torch.utils.data.DataLoader(
DA.myImageFloder(all_left_img,all_right_img,all_left_disp, True),
batch_size= 12, shuffle= True, num_workers= 8, drop_last=False)
TestImgLoader = torch.utils.data.DataLoader(
DA.myImageFloder(test_left_img,test_right_img,test_left_disp, False),
batch_size= 8, shuffle= False, num_workers= 4, drop_last=False)
if args.model == 'stackhourglass':
model = stackhourglass(args.maxdisp)
model = nn.DataParallel(model)
elif args.model == 'basic':
model = basic(args.maxdisp)
model = nn.DataParallel(model)
elif args.model == 'RTStereoNet':
model = RTStereoNet(args.maxdisp)
else:
print('no model')
if args.cuda:
model.cuda()
if args.loadmodel is not None:
state_dict = torch.load(args.loadmodel)
model.load_state_dict(state_dict['state_dict'])
print('Number of model parameters: {}'.format(sum([p.data.nelement() for p in model.parameters()])))
optimizer = optim.Adam(model.parameters(), lr=0.1, betas=(0.9, 0.999))
def train(imgL,imgR,disp_L):
model.train()
imgL = Variable(torch.FloatTensor(imgL))
imgR = Variable(torch.FloatTensor(imgR))
disp_L = Variable(torch.FloatTensor(disp_L))
if args.cuda:
imgL, imgR, disp_true = imgL.cuda(), imgR.cuda(), disp_L.cuda()
#---------
mask = (disp_true > 0)
mask.detach_()
#----
optimizer.zero_grad()
if args.model == 'stackhourglass':
output1, output2, output3 = model(imgL,imgR)
output1 = torch.squeeze(output1,1)
output2 = torch.squeeze(output2,1)
output3 = torch.squeeze(output3,1)
loss = 0.5*F.smooth_l1_loss(output1[mask], disp_true[mask], size_average=True) + 0.7*F.smooth_l1_loss(output2[mask], disp_true[mask], size_average=True) + F.smooth_l1_loss(output3[mask], disp_true[mask], size_average=True)
elif args.model == 'basic':
output = model(imgL,imgR)
output = torch.squeeze(output3,1)
loss = F.smooth_l1_loss(output3[mask], disp_true[mask], size_average=True)
loss.backward()
optimizer.step()
return loss.data[0]
def test(imgL,imgR,disp_true):
model.eval()
imgL = Variable(torch.FloatTensor(imgL))
imgR = Variable(torch.FloatTensor(imgR))
if args.cuda:
imgL, imgR = imgL.cuda(), imgR.cuda()
with torch.no_grad():
output3 = model(imgL,imgR)
pred_disp = output3.data.cpu()
#computing 3-px error#
true_disp = copy.deepcopy(disp_true)
index = np.argwhere(true_disp>0)
disp_true[index[0][:], index[1][:], index[2][:]] = np.abs(true_disp[index[0][:], index[1][:], index[2][:]]-pred_disp[index[0][:], index[1][:], index[2][:]])
correct = (disp_true[index[0][:], index[1][:], index[2][:]] < 3)|(disp_true[index[0][:], index[1][:], index[2][:]] < true_disp[index[0][:], index[1][:], index[2][:]]*0.05)
torch.cuda.empty_cache()
return (float(torch.sum(correct))/float(len(index[0])))
def adjust_learning_rate(optimizer, epoch):
if epoch <= 200:
lr = 0.001
else:
lr = 0.0001
print(lr)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def main():
max_acc=0
max_epo=0
start_full_time = time.time()
for epoch in range(1, args.epochs+1):
total_train_loss = 0
total_test_loss = 0
adjust_learning_rate(optimizer,epoch)
## training ##
for batch_idx, (imgL_crop, imgR_crop, disp_crop_L) in enumerate(TrainImgLoader):
start_time = time.time()
loss = train(imgL_crop,imgR_crop, disp_crop_L)
print('Iter %d training loss = %.3f , time = %.2f' %(batch_idx, loss, time.time() - start_time))
total_train_loss += loss
print('epoch %d total training loss = %.3f' %(epoch, total_train_loss/len(TrainImgLoader)))
## Test ##
for batch_idx, (imgL, imgR, disp_L) in enumerate(TestImgLoader):
test_loss = test(imgL,imgR, disp_L)
print('Iter %d 3-px Accuracy in val = %.3f' %(batch_idx, test_loss*100))
total_test_loss += test_loss
print('epoch %d total 3-px Accuracy in val = %.3f' %(epoch, total_test_loss/len(TestImgLoader)*100))
if total_test_loss/len(TestImgLoader)*100 > max_acc:
max_acc = total_test_loss/len(TestImgLoader)*100
max_epo = epoch
print('MAX epoch %d total test Accuracy = %.3f' %(max_epo, max_acc))
#SAVE
savefilename = args.savemodel+'finetune_'+str(epoch)+'.tar'
torch.save({
'epoch': epoch,
'state_dict': model.state_dict(),
'train_loss': total_train_loss/len(TrainImgLoader),
'Accuracy': total_test_loss/len(TestImgLoader)*100,
}, savefilename)
print('full finetune time = %.2f HR' %((time.time() - start_full_time)/3600))
print(max_epo)
print(max_acc)
if __name__ == '__main__':
main()