-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.lua
executable file
·521 lines (453 loc) · 18.7 KB
/
train.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
-- Copyright 2018 Joel Janai, Fatma Güney, Anurag Ranjan and the Max Planck Gesellschaft.
-- All rights reserved.
-- This software is provided for research purposes only.
-- By using this software you agree to the terms of the license file
-- in the root folder.
-- For commercial use, please contact [email protected].
--
-- Copyright (c) 2014, Facebook, Inc.
-- All rights reserved.
--
-- This source code is licensed under the BSD-style license found in the
-- LICENSE file in the root directory of this source tree. An additional grant
-- of patent rights can be found in the PATENTS file in the same directory.
--
require 'optim'
require 'image'
paths.dofile('myLogger.lua')
--[[
1. Setup SGD optimization state and learning rate schedule
2. Create loggers.
3. train - this function handles the high-level training loop,
i.e. load data, train model, save model and state to disk
4. trainBatch - Used by train() to train a single batch after the data is loaded.
]]--
-- Setup a reused optimization state (for sgd). If needed, reload it from disk
local optimState = {
learningRate = opt.LR,
learningRateDecay = 0.0,
momentum = opt.momentum,
dampening = 0.0,
weightDecay = opt.weightDecay
}
if opt.optimState ~= 'none' then
local retrain_opt = opt.optimState
assert(paths.filep(retrain_opt), 'File not found: ' .. retrain_opt)
print('Loading optimState from file: ' .. retrain_opt)
optimState = torch.load(retrain_opt)
end
-- Learning rate annealing schedule. We will build a new optimizer for
-- each epoch.
--
-- By default we follow a known recipe for a 55-epoch training. If
-- the learningRate command-line parameter has been specified, though,
-- we trust the user is doing something manual, and will use her
-- exact settings for all optimization.
--
-- Return values:
-- diff to apply to optimState,
-- true IFF this is the first epoch of a new regime
local level_weights = {
0.005, 0.01, 0.02, 0.08, 0.32, 0.64, 1.28
}
if opt.sizeAverage then
level_weights = {
1, 1, 1, 1, 1, 1
}
end
local function paramsForEpoch(epoch)
-- PWC parameters and schedule
local LR = 1e-4
if opt.LR > 0 then
LR = opt.LR
end
local WD = 0
if opt.weightDecay > 0 then
WD = opt.weightDecay
end
local regimes = {
-- start, end, LR, WD,
{ 1, 200, LR, WD },
{ 201, 400, LR/2, WD },
{ 401, 600, LR/4, WD },
{ 601, 800, LR/8, WD },
{ 801, 1e3, LR/16, WD },
}
for _, row in ipairs(regimes) do
if epoch >= row[1] and epoch <= row[2] then
return { learningRate=row[3], weightDecay=row[4] }, epoch >= row[1]
end
end
end
-- 2. Create loggers.
trainLogger = optim.myLogger(paths.concat(opt.save, 'train.log'))
local batchNumber
local loss_epoch
local avg_epe
local avg_epe_nocc
local avg_epe_occ
local avg_oacc
local avg_occ_acc_bwd
local avg_occ_acc_vis
local avg_occ_acc_fwd
-- 3. train - this function handles the high-level training loop,
-- i.e. load data, train model, save model and state to disk
function train()
print('==> doing epoch on training data:')
print("==> online epoch # " .. epoch)
local params, newRegime = paramsForEpoch(epoch)
if newRegime then
optimState = {
learningRate = params.learningRate,
learningRateDecay = 0.0,
momentum = opt.momentum,
dampening = 0.0,
weightDecay = params.weightDecay
}
end
batchNumber = 0
cutorch.synchronize()
-- set the dropouts to training mode
model:training()
local tm = torch.Timer()
loss_epoch = 0
avg_epe = 0
avg_epe_nocc = 0
avg_epe_occ = 0
avg_oacc = 0
avg_occ_acc_bwd = 0
avg_occ_acc_vis = 0
avg_occ_acc_fwd = 0
for i = 1, opt.epochSize do
-- queue jobs to data-workers
donkeys:addjob(
-- the job callback (runs in data-worker thread)
function()
local inputs, labels, masks = trainLoader:sample(opt.batchSize)
return inputs, labels, masks
end,
-- the end callback (runs in the main thread)
trainBatch
)
end
donkeys:synchronize()
cutorch.synchronize()
loss_epoch = loss_epoch / opt.epochSize
avg_epe = avg_epe / opt.epochSize
avg_epe_nocc = avg_epe_nocc / opt.epochSize
avg_epe_occ = avg_epe_occ / opt.epochSize
avg_oacc = avg_oacc / opt.epochSize
avg_occ_acc_bwd = avg_occ_acc_bwd / opt.epochSize
avg_occ_acc_vis = avg_occ_acc_vis / opt.epochSize
avg_occ_acc_fwd = avg_occ_acc_fwd / opt.epochSize
if opt.ground_truth == true then
trainLogger:add{['avg epe (train set)'] = avg_epe, ['avg epe non occ (train set)'] = avg_epe_nocc, ['avg epe occ (train set)'] = avg_epe_occ, ['avg loss (train set)'] = loss_epoch,['avg occ acc (train set)'] = avg_oacc,
['avg bwd acc (train set)'] = avg_occ_acc_bwd,['avg vis acc (train set)'] = avg_occ_acc_vis,['avg fwd acc (train set)'] = avg_occ_acc_fwd}
print(string.format('Epoch: [%d][TRAINING SUMMARY] Total Time(s): %.2f\t'
.. 'average loss (per batch): %.2f \t average epe (per batch): %.2f \t average epe non occ (per batch): %.2f \t average epe occ (per batch): %.2f \t average occ acc (per batch): %.2f (%.2f,%.2f,%.2f)',
epoch, tm:time().real, loss_epoch, avg_epe, avg_epe_nocc, avg_epe_occ, avg_oacc, avg_occ_acc_bwd, avg_occ_acc_vis, avg_occ_acc_fwd))
else
trainLogger:add{['avg loss (train set)'] = loss_epoch}
print(string.format('Epoch: [%d][TRAINING SUMMARY] Total Time(s): %.2f\t'
.. 'average loss (per batch): %.2f \t ',
epoch, tm:time().real, loss_epoch))
end
print('\n')
-- save model
collectgarbage()
-- clear the intermediate states in the model before saving to disk
-- this saves lots of disk space
model:clearState()
if epoch == 1 or epoch % opt.epochStore == 0 then
saveDataParallel(paths.concat(opt.save, 'model_' .. epoch .. '.t7'), model) -- defined in util.lua
torch.save(paths.concat(opt.save, 'optimState_' .. epoch .. '.t7'), optimState)
end
end -- of train()
-------------------------------------------------------------------------------------------
-- GPU inputs (preallocate)
local inputs = torch.CudaTensor()
local labels = torch.CudaTensor()
local masks = torch.CudaTensor()
local timer = torch.Timer()
local dataTimer = torch.Timer()
local parameters, gradParameters = model:getParameters()
-- 4. trainBatch - Used by train() to train a single batch after the data is loaded.
function trainBatch(inputsCPU, labelsCPU, masksCPU)
cutorch.synchronize()
collectgarbage()
local dataLoadingTime = dataTimer:time().real
timer:reset()
-- transfer over to GPU
inputs:resize(inputsCPU:size()):copy(inputsCPU)
labels:resize(labelsCPU:size()):copy(labelsCPU)
masks:resize(masksCPU:size()):copy(masksCPU)
local err = 0
local occ = 0
local epe = 0
local epe_nocc = 0
local epe_occ = 0
local oacc = 0
local occ_acc_bwd = 0
local occ_acc_fwd = 0
local occ_acc_vis = 0
local pme = 0
local sflow = 0
local entropy = 0
local socc = 0
local gocc = 0
local tflow = 0
local tocc = 0
local outputs
feval = function(x)
local out_warp_start, n_unit_out, n_flow, ref_c
if opt.frames == 2 then
ref_c = 1
out_warp_start = 2
n_unit_out = 2 -- only flow and warped
n_flow = 1
else
-- idx to ref
local ref = 0.5 * (opt.frames + 1)
ref_c = (ref - 1) * 3 + 1
out_warp_start = 3
n_unit_out = opt.frames + 1 -- flow + occ + warped
n_flow = 1
if opt.past_flow then
n_flow = 2
n_unit_out = n_unit_out + 1
out_warp_start = 4
end
end
-- ################################### forward model ###################################
model:zeroGradParameters()
outputs = model:forward(inputs[{{},{1,opt.frames*3},{},{}}]:contiguous())
if opt.debug == 1 then
for i = 1,opt.frames do
local b = 1
-- for b=1,inputsCPU:size(1) do
require 'image'
if i < opt.frames then
local img = torch.Tensor(3,outputs[out_warp_start+i-1]:size(3),outputs[out_warp_start+i-1]:size(4))
img:copy(outputs[out_warp_start+i-1][{{b},{},{},{}}])
local mx = torch.max(img)
local mn = torch.min(img)
img = (img - mn) / (mx - mn)
image.save(string.format("tmp/%d_frame_%03d_warp.jpg", batchNumber, i), img)
end
img = torch.Tensor(3,inputsCPU:size(3),inputsCPU:size(4))
img:copy(inputsCPU[{{b},{(i - 1)* 3 + 1,(i - 1)* 3 + 3},{},{}}][1])
local mx = torch.max(img)
local mn = torch.min(img)
img = (img - mn) / (mx - mn)
image.save(string.format("tmp/%d_frame_%03d_ref.jpg", batchNumber, i), img)
-- end
end
end
local gradOutputs = {}
-- DOWNSAMPLE
local down = nn.SpatialAveragePooling(2,2,2,2):cuda()
local down_nn = nn.SpatialAveragePooling(1,1,2,2):cuda()
local down_sampled = inputs:clone()
local down_sampled_flow = labels[{{},{1,2},{},{}}]:clone()
local down_sampled_occ = labels[{{},{3},{},{}}]:clone()
local down_sampled_mask = masks:clone()
local levels = #outputs / n_unit_out
for f = 1, #outputs do
table.insert(gradOutputs, torch.CudaTensor(outputs[f]:size()):zero())
end
-- ################################### SUPERVISION ###################################
if opt.optimize == 'epe' then
for l = 0, (levels-1) do
if l > 0 then
down_sampled_flow = down_nn:forward(down_sampled_flow):clone()
down_sampled_mask = down_nn:forward(down_sampled_mask):clone()
if opt.rescale_flow == 1 then
down_sampled_flow:div(2)
end
if opt.frames > 2 and not opt.no_occ then
down_sampled_occ = down_nn:forward(down_sampled_occ):clone()
end
end
-- 1-4, 5-8, 9-12
local sub_outs = {unpack(outputs, l * n_unit_out + 1, (l+1) * n_unit_out)}
-- Flow Supervised Loss
local err_f = opt.epe * criterion:forward(sub_outs[1], {down_sampled_flow, down_sampled_mask})
err = err + err_f * level_weights[l+1]
gradOutputs[l * n_unit_out + 1]:add(criterion:backward(sub_outs[1], {down_sampled_flow, down_sampled_mask}):clone():mul(opt.epe * level_weights[l+1]))
if opt.frames > 2 then
if not opt.no_occ then
-- Occlusion Supervised Loss
local occ_repeated = down_sampled_occ
-- convert gt occlusions
local tmp1 = occ_repeated[{{},{1},{},{}}]
local tmp2 = occ_repeated[{{},{2},{},{}}]
occ_repeated[{{},{1},{},{}}] = torch.eq(tmp1,0):float() + 0.5*torch.eq(tmp1,0.5):float()
occ_repeated[{{},{2},{},{}}] = torch.eq(tmp2,1):float() + 0.5*torch.eq(tmp2,0.5):float()
occ_repeated = occ_repeated:cuda()
local tmp = level_weights[l+1] * occ_criterion:forward(sub_outs[out_warp_start-1], occ_repeated)
err = err + tmp
occ = occ + tmp
gradOutputs[l * n_unit_out + out_warp_start-1]:add(occ_criterion:backward(sub_outs[out_warp_start-1], occ_repeated):clone():mul(level_weights[l+1]))
end
end
end
end
-- highest res epe
if opt.ground_truth == true then
-- Flow Supervised Loss
local epe_b = criterion:forward(outputs[1] * opt.flownet_factor, {labels[{{},{1,2},{},{}}] * opt.flownet_factor, masks})
if opt.sizeAverage == false then
epe_b = epe_b / masks:sum()
end
epe = epe + epe_b
local lbl_occ = labels[{{},{4},{},{}}]:squeeze():float()
local norm
-- epe in visible regions!
local occ = lbl_occ:ne(0.5):cudaByte()
local vis_epe_map = criterion.epe_map:clone()
vis_epe_map = vis_epe_map:maskedFill(occ, 0)
norm = (1-occ):float():cmul(masksCPU):sum()
vis_epe_map = 0
if norm > 0 then
vis_epe_map = vis_epe_map / norm
if opt.flownet_factor ~= 1 then
vis_epe_map = vis_epe_map * opt.flownet_factor
end
epe_nocc = epe_nocc + vis_epe_map
end
-- epe in occluded regions!
local vis = lbl_occ:eq(0.5):cudaByte()
local occ_epe_map = criterion.epe_map:clone() -- DONT USE CRITERION IN BETWEEN
occ_epe_map = occ_epe_map:maskedFill(vis, 0)
norm = (1-vis):float():cmul(masksCPU):sum()
occ_epe_map = 0
if norm > 0 then
occ_epe_map = occ_epe_map / norm
if opt.flownet_factor ~= 1 then
occ_epe_map = occ_epe_map * opt.flownet_factor
end
epe_occ = epe_occ + occ_epe_map
end
local tmp, occ_est_sharp, occ_map
if opt.frames > 2 and (not opt.no_occ) then
if outputs[out_warp_start-1]:size(2) == 1 then
tmp = outputs[out_warp_start-1]:float():squeeze()
occ_est_sharp = torch.mul(tmp, 2):round():div(2)
elseif outputs[out_warp_start-1]:size(2) == 3 then
_,tmp = torch.max(outputs[out_warp_start-1],2)
tmp = tmp:float():squeeze()
occ_est_sharp = torch.div(tmp - 1, 2)
else
occ_est_sharp = torch.round((1 - outputs[out_warp_start-1][{{},{1},{},{}}]) + (outputs[out_warp_start-1][{{},{2},{},{}}])):mul(0.5)
occ_est_sharp = occ_est_sharp:float()
end
local lbl_occ = labels[{{},{3},{},{}}]:squeeze():float()
occ_map = torch.eq(lbl_occ, occ_est_sharp):float()
oacc = oacc + (occ_map:sum() / lbl_occ:nElement())
local bwd_occ = lbl_occ:eq(0)
norm = bwd_occ:sum()
if norm > 0 then
occ_acc_bwd = occ_acc_bwd + torch.eq(occ_est_sharp, lbl_occ):maskedSelect(bwd_occ):float():sum() / norm
end
local vis = lbl_occ:eq(0.5)
norm = vis:sum()
if norm > 0 then
occ_acc_vis = occ_acc_vis + torch.eq(occ_est_sharp, lbl_occ):maskedSelect(vis):float():sum() / norm
end
local fwd_occ = lbl_occ:eq(1)
norm = fwd_occ:sum()
if norm > 0 then
occ_acc_fwd = occ_acc_fwd + torch.eq(occ_est_sharp, lbl_occ):maskedSelect(fwd_occ):float():sum() / norm
end
end
end
-- ################################### PHOTOMETRIC LOSS AND SMOOTHNESS ###################################
if(opt.optimize == 'pme') then
for l = 0, (levels-1) do
if l > 0 then
down_sampled = down:forward(down_sampled)
end
-- 1-4, 5-8, 9-12
local sub_outs = {unpack(outputs, l * n_unit_out + 1, (l+1) * n_unit_out)}
pme_criterion.pwc_flow_scaling = model.flow_scale[levels - l]
-- Flow Smoothness Loss
for i = 1, n_flow do
sflow = sflow + level_weights[l+1] * opt.smooth_flow * fs_criterion:forward(sub_outs[i], down_sampled[{{},{ref_c,ref_c+2},{},{}}])
local tmp = level_weights[l+1] * opt.smooth_flow * fs_criterion:backward(sub_outs[i], down_sampled[{{},{ref_c,ref_c+2},{},{}}]):clone()
gradOutputs[l * n_unit_out + i]:add(tmp)
end
fs_criterion:clear()
-- constant velocity loss
if opt.past_flow then
sflow = sflow + level_weights[l+1] * opt.const_vel * cv_criterion:forward(sub_outs)
local tmp = cv_criterion:backward(sub_outs)
gradOutputs[l * n_unit_out + 1]:add(level_weights[l+1] * opt.const_vel * tmp[1])
gradOutputs[l * n_unit_out + 2]:add(level_weights[l+1] * opt.const_vel * tmp[2])
end
-- Photometric Loss
pme = pme + level_weights[l+1] * opt.pme * pme_criterion:forward(sub_outs, down_sampled[{{},{ref_c,ref_c+2},{},{}}])
local grads = pme_criterion:backward(sub_outs, down_sampled[{{},{ref_c,ref_c+2},{},{}}])
for i,v in ipairs(grads) do
local tmp = level_weights[l+1] * opt.pme * v:clone()
if opt.frames == 2 then
gradOutputs[l * n_unit_out + out_warp_start + i - 1]:add(tmp)
else
gradOutputs[l * n_unit_out + out_warp_start + i - 2]:add(tmp)
end
end
pme_criterion:clear()
if opt.frames > 2 and (not opt.no_occ) then
-- Occlusion Smoothness Loss
if(opt.smooth_occ > 0) then
socc = socc + level_weights[l+1] * opt.smooth_occ * os_criterion:forward(sub_outs[out_warp_start-1], down_sampled[{{},{ref_c,ref_c+2},{},{}}])
gradOutputs[l * n_unit_out + out_warp_start - 1]:add(level_weights[l+1] * opt.smooth_occ, os_criterion:backward(sub_outs[out_warp_start-1], down_sampled[{{},{ref_c,ref_c+2},{},{}}]):clone())
os_criterion:clear()
end
-- Occlusion Prior Loss
if(opt.prior_occ > 0) then
gocc = gocc + level_weights[l+1] * opt.prior_occ * oprior_criterion:forward(sub_outs[out_warp_start-1], down_sampled[{{},{ref_c,ref_c+2},{},{}}])
gradOutputs[l * n_unit_out + out_warp_start - 1]:add(level_weights[l+1] * opt.prior_occ, oprior_criterion:backward(sub_outs[out_warp_start-1], down_sampled[{{},{ref_c,ref_c+2},{},{}}]):clone())
end
end
collectgarbage()
end
err = pme + sflow + entropy + socc + gocc
end
err = err + tflow + tocc
-- ################################### BACKPROP ###################################
model:backward(inputs, gradOutputs)
return err, gradParameters
end
if opt.optimizer == 'adam' then
optim.adam(feval, parameters, optimState)
elseif opt.optimizer == 'sgd' then
optim.sgd(feval, parameters, optimState)
else
error("Specify Optimizer")
end
-- DataParallelTable's syncParameters
if model.needsSync then
model:syncParameters()
end
cutorch.synchronize()
batchNumber = batchNumber + 1
loss_epoch = loss_epoch + err
avg_epe = avg_epe + epe
avg_epe_nocc = avg_epe_nocc + epe_nocc
avg_epe_occ = avg_epe_occ + epe_occ
avg_oacc = avg_oacc + oacc
avg_occ_acc_bwd = avg_occ_acc_bwd + occ_acc_bwd
avg_occ_acc_vis = avg_occ_acc_vis + occ_acc_vis
avg_occ_acc_fwd = avg_occ_acc_fwd + occ_acc_fwd
-- Calculate top-1 error, and print information
if opt.optimize == 'pme' and opt.ground_truth == true then
print(('Epoch: [%d][%d/%d]\tTime %.3f\tERR %.3f\tPME %.3f\tSmoothFlow %.3f\tSmoothOcc %.3f\tPriorOcc %.3f\t\tEPE %.3f\tEPE non Occ %.3f\tEPE Occ %.3f\tOcc Acc %.3f (%.3f,%.3f,%.3f)\tLR %.0e\tDataLoadingTime %.3f'):format(
epoch, batchNumber, opt.epochSize, timer:time().real, err, pme, sflow, socc, gocc, epe, epe_nocc, epe_occ, oacc, occ_acc_bwd, occ_acc_vis, occ_acc_fwd,
optimState.learningRate, dataLoadingTime))
else
print(('Epoch: [%d][%d/%d]\tTime %.3f Err %.4f \tOcc %.3f\tEPE %.3f\tEPE non Occ %.3f\tEPE Occ %.3f\tOcc Acc %.3f (%.3f,%.3f,%.3f)\t LR %.0e DataLoadingTime %.3f'):format(
epoch, batchNumber, opt.epochSize, timer:time().real, err, occ, epe, epe_nocc, epe_occ, oacc, occ_acc_bwd, occ_acc_vis, occ_acc_fwd,
optimState.learningRate, dataLoadingTime))
end
dataTimer:reset()
end