-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTeam6_final.py
847 lines (663 loc) · 23.2 KB
/
Team6_final.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
#!/usr/bin/env python
"""Team6_final.py: Mushroom Edibility Classification Final Project"""
__author__ = "Caroline Krall, Jerrick Gerald, Karina Martinez, Lijia Ren"
#%% [markdown]
# # Mushroom Edibility Classification
# By: Caroline Krall, Jerrick Gerald, Karina Martinez, Lijia Ren (Team 6)
#
# ## Data Cleaning
#%%
import pandas as pd
import numpy as np
from sklearn.preprocessing import LabelEncoder
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import preprocessing
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, confusion_matrix
from sklearn.metrics import precision_score, recall_score, f1_score, accuracy_score, roc_auc_score, roc_curve
from sklearn.metrics import RocCurveDisplay, ConfusionMatrixDisplay
import statsmodels.api as sm
import pylab as py
from sklearn import tree
from sklearn.tree import DecisionTreeClassifier
from sklearn.preprocessing import StandardScaler, OneHotEncoder, LabelBinarizer
get_ipython().run_line_magic('matplotlib', 'inline')
plt.rcParams['figure.figsize'] = (10.0, 8.0)
from scipy import stats
from sklearn import metrics
from scipy.stats import norm
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.compose import ColumnTransformer
from sklearn import svm
from sklearn.model_selection import cross_val_score, GridSearchCV
#%%
# Importing data
data = pd.read_csv('secondary_data.csv',sep=';')
data.head()
#%%
data['class'].value_counts()
#%%
data.info()
#%%
missing_values_count = data.isnull().sum()
missing_values_count
#%%
# Drop columns with high missing count
data=data.drop(['cap-surface','gill-spacing','stem-root','stem-surface','veil-type','veil-color','spore-print-color'],axis=1)
data.head()
#%%
# Fill remaining missing values
data= data.fillna(0)
data.isnull().sum()
#%%
data.head()
# %%
# Export to new file
# data.to_csv('final.csv')
# %% [markdown]
# ## EDA
# ### Distribution Plots
#%%
df = pd.read_csv('final.csv')
df.drop("Unnamed: 0", axis=1, inplace=True)
df.info()
# %%
# Cap Shape Distribution
sns.displot(df, x="cap-shape", hue="class", multiple="stack", palette="husl").set(title="Cap Shape Distribution")
plt.show()
#%%
table1 = pd.crosstab(df['cap-shape'],
df['class'],
margins = False)
table1['total'] = table1.sum(axis=1)
table1['% e'] = (table1['e'] / table1.total * 100).round(2)
table1['% p'] = (table1['p'] / table1.total * 100).round(2)
table1.sort_values('total', ascending=False)
#%%
# Cap Color Distribution
sns.displot(df, x="cap-color", hue="class", multiple="stack", palette="husl").set(title="Cap Color Distribution")
plt.show()
#%%
table1 = pd.crosstab(df['cap-color'],
df['class'],
margins = False)
table1['total'] = table1.sum(axis=1)
table1['% e'] = (table1['e'] / table1.total * 100).round(2)
table1['% p'] = (table1['p'] / table1.total * 100).round(2)
table1.sort_values('total', ascending=False)
#%%
# Gill Attachment Distribution
sns.displot(df, x="gill-attachment", hue="class", multiple="stack", palette="husl").set(title="Gill Attachment Distribution")
plt.show()
#%%
table1 = pd.crosstab(df['gill-attachment'],
df['class'],
margins = False)
table1['total'] = table1.sum(axis=1)
table1['% e'] = (table1['e'] / table1.total * 100).round(2)
table1['% p'] = (table1['p'] / table1.total * 100).round(2)
table1.sort_values('total', ascending=False)
#%%
# Gill Color Distribution
sns.displot(df, x="gill-color", hue="class", multiple="stack", palette="husl").set(title="Gill Color Distribution")
plt.show()
#%%
table1 = pd.crosstab(df['gill-color'],
df['class'],
margins = False)
table1['total'] = table1.sum(axis=1)
table1['% e'] = (table1['e'] / table1.total * 100).round(2)
table1['% p'] = (table1['p'] / table1.total * 100).round(2)
table1.sort_values('total', ascending=False)
# %%
# Does-Bruise-Or-Bleed Distribution
sns.displot(df, x="does-bruise-or-bleed", hue="class", multiple="stack", palette="husl").set(title="Does-Bruise-Bleed Distribution")
plt.show()
#%%
table2 = pd.crosstab(df['does-bruise-or-bleed'],
df['class'],
margins = False)
table2['total'] = table2.sum(axis=1)
table2['% e'] = (table2['e'] / table2.total * 100).round(2)
table2['% p'] = (table2['p'] / table2.total * 100).round(2)
table2.sort_values('total', ascending=False)
#%%
# Season Distribution
sns.displot(df, x="season", hue="class", multiple="stack", palette="husl").set(title="Season Distribution")
plt.show()
#%%
table2 = pd.crosstab(df['season'],
df['class'],
margins = False)
table2['total'] = table2.sum(axis=1)
table2['% e'] = (table2['e'] / table2.total * 100).round(2)
table2['% p'] = (table2['p'] / table2.total * 100).round(2)
table2.sort_values('total', ascending=False)
# %%
# Habitat Distribution
sns.displot(df, x="habitat", hue="class", multiple="stack", palette="husl").set(title="Habitat Distribution")
plt.show()
#%%
table2 = pd.crosstab(df['habitat'],
df['class'],
margins = False)
table2['total'] = table2.sum(axis=1)
table2['% e'] = (table2['e'] / table2.total * 100).round(2)
table2['% p'] = (table2['p'] / table2.total * 100).round(2)
table2.sort_values('total', ascending=False)
#%%
# Stem Width Distribution
sns.histplot(df, x="stem-width", hue="class", multiple="stack", palette="husl", bins=20).set(title="Stem Width Distribution")
plt.show()
#%%
# Stem Width Box-Plot
sns.boxplot(y='stem-width',x='class',data=df, palette='husl').set(title="Stem Width Distribution")
plt.show()
#%%
# Stem Height
# plt.hist(df['stem-height'], stacked = True)
# df.pivot(columns='class', values = 'stem-height').plot.hist(stacked = True)
# Stem Height Distribution
sns.histplot(df, x="stem-height", hue="class", multiple="stack", palette="husl", bins=20).set(title="Stem Height Distribution")
plt.show()
# %%
# Stem Height Box-Plot
sns.boxplot(y='stem-height',x='class',data=df, palette='husl').set(title="Stem Height Distribution")
plt.show()
#%%
# Has-ring Distribution
# counts = df['has-ring'].value_counts()
# df.groupby(['has-ring']).size().plot(kind = "bar")
# df.groupby(['has-ring', 'class']).size().plot(kind = "bar", stacked=True)
# print(counts)
#%%
# Has Ring Distribution
sns.displot(df, x="has-ring", hue="class", multiple="stack", palette="husl").set(title="Has-Ring Distribution")
plt.show()
#%%
table3 = pd.crosstab(df['has-ring'],
df['class'],
margins = False)
table3['total'] = table3.sum(axis=1)
table3['% e'] = (table3['e'] / table3.total * 100).round(2)
table3['% p'] = (table3['p'] / table3.total * 100).round(2)
table3.sort_values('total', ascending=False)
# %%
# Ring type
# df.groupby(['ring-type']).size().plot(kind = "bar", stacked=True)
# counts = df['ring-type'].value_counts()
# print(counts)
# pd.crosstab(df['ring-type'], df['class']).plot(kind='bar', stacked=True)
#%%
# Ring Type Distribution
sns.displot(df, x="ring-type", hue="class", multiple="stack", palette="husl").set(title="Ring Type Distribution")
plt.show()
#%%
table3 = pd.crosstab(df['ring-type'],
df['class'],
margins = False)
table3['total'] = table3.sum(axis=1)
table3['% e'] = (table3['e'] / table3.total * 100).round(2)
table3['% p'] = (table3['p'] / table3.total * 100).round(2)
table3.sort_values('total', ascending=False)
#%%
# cap-diameter
# plt.hist(df['cap-diameter'])
# df.pivot(columns='class', values = 'cap-diameter').plot.hist(stacked = True)
#%%
# Cap Diameter Distribution
sns.histplot(df, x="cap-diameter", hue="class", multiple="stack", palette="husl", bins=20).set(title="Cap Diameter Distribution")
plt.show()
# %%
# Cap Diameter Box-Plot
sns.boxplot(y='cap-diameter',x='class',data=df, palette='husl').set(title="Cap Diameter Distribution")
plt.show()
#%%
# Stem Color Distribution
# count_classes = pd.value_counts(df['stem-color'], sort = True)
# count_classes.plot(kind = 'bar', rot=0,color='tan')
#%%
# Stem Color Distribution
sns.displot(df, x="stem-color", hue="class", multiple="stack", palette="husl").set(title="Stem Color Distribution")
plt.show()
#%%
table5 = pd.crosstab(df['stem-color'],
df['class'],
margins = False)
table5['total'] = table5.sum(axis=1)
table5['% e'] = (table5['e'] / table5.total * 100).round(2)
table5['% p'] = (table5['p'] / table5.total * 100).round(2)
table5.sort_values('total', ascending=False)
#%%
# Class Distribution
# count_classes = pd.value_counts(df['class'], sort = True)
# count_classes.plot(kind = 'bar', rot=0)
#%%
# Class Distribution
sns.displot(df, x="class", hue= "class", palette="husl").set(title="Class Distribution")
plt.show()
#%%
table4 = pd.DataFrame(df['class'].value_counts())
table4
#%% [markdown]
# ### Correlation Plots
#%%
# Correlation Matrix
df1 = df.copy(deep=True)
labelencoder=LabelEncoder()
for column in df.columns:
df1[column] = labelencoder.fit_transform(df1[column])
comat=df1.corr()
k=15
col=comat.nlargest(k,'class')['class'].index
cm=np.corrcoef(df1[col].values.T)
plt.figure(figsize=(16, 10))
sns.set(font_scale=1.25)
hm = sns.heatmap(cm,annot=True,cbar=True, square=True, fmt='.2f', annot_kws={'size': 10}, yticklabels=col.values, xticklabels=col.values)
plt.show()
#%%
# Stem Width vs Cap Diameter
sns.scatterplot(data=df, x="cap-diameter", y="stem-width", hue="class", palette="husl").set(title="Stem Width vs Cap Diameter")
plt.show()
#%%
# Stem Height vs Cap Diameter
sns.scatterplot(data=df, x="cap-diameter", y="stem-height", hue="class", palette="husl").set(title="Stem Height vs Cap Diameter")
plt.show()
#%%
# Stem Width vs Stem Height
sns.scatterplot(data=df, x="stem-height", y="stem-width", hue="class", palette="husl").set(title="Stem Width vs Stem Height")
plt.show()
#%%
#%%
# Ring Type Distribution by Has-Ring
sns.displot(df, x="ring-type", hue= "has-ring", multiple="stack", palette="husl").set(title="Ring Type Distribution by Has-Ring")
plt.show()
#%% [markdown]
# ## Models
# ### Logistic Regression
#%%
df = pd.read_csv("final.csv")
print(df.head())
#%%
#need to encode all strings to floats
le = preprocessing.LabelEncoder()
for column_name in df.columns:
if df[column_name].dtype == object:
df[column_name] = le.fit_transform(df[column_name])
else:
pass
print(df.head())
# NOTE: class p = 1
# %%
# based on the model summary, I will drop gill attachment and stem color from the model
yf = df[['class']]
xf = df[['season' , 'habitat', 'does-bruise-or-bleed' ,'cap-color' ,'cap-diameter','ring-type', 'stem-width', 'cap-shape', 'gill-color', 'stem-height', 'stem-color', 'gill-attachment']]
xftrain, xftest, yftrain, yftest = train_test_split(xf, yf, test_size=0.30, random_state=123)
fullLogit = LogisticRegression() #initiate logit model
fullLogit.fit(xftrain, yftrain)
#%%
print(fullLogit.score(xftest, yftest))
print(fullLogit.score(xftrain, yftrain))
yftrue, yfpred = yftest, fullLogit.predict(xftest)
print(classification_report(yftrue, yfpred))
# %%
# Confusion Matrix
conf = confusion_matrix(yftrue, yfpred)
ConfusionMatrixDisplay.from_predictions(yftrue, yfpred)
# %%
# Model Evaluation metrics
print(precision_score(yftest, yfpred))
print(recall_score(yftest, yfpred))
print(accuracy_score(yftest, yfpred))
print('F1 Score: %.3f' % f1_score(yftest, yfpred))
print(roc_auc_score(yftest, yfpred))
# %%
# ROC Curve chart
RocCurveDisplay.from_predictions(yftest, yfpred)
#%%
# reduced model
y = df[['class']]
x = df[['ring-type', 'stem-width', 'cap-shape', 'gill-color', 'stem-height']]
xtrain, xtest, ytrain, ytest = train_test_split(x, y, test_size=0.30, random_state=123)
fullLogit = LogisticRegression() #initiate logit model
fullLogit.fit(xtrain, ytrain)
#%%
# model score and classification report
print(fullLogit.score(xtest, ytest))
print(fullLogit.score(xtrain, ytrain))
ytrue, ypred = ytest, fullLogit.predict(xtest)
print(classification_report(ytrue, ypred))
# %%
# Confusion Matrix
conf = confusion_matrix(ytrue, ypred)
ConfusionMatrixDisplay.from_predictions(ytrue, ypred)
# %%
# Model Evaluation metrics
print(precision_score(ytest, ypred))
print(recall_score(ytest, ypred))
print(accuracy_score(ytest, ypred))
print('F1 Score: %.3f' % f1_score(ytest, ypred))
print(roc_auc_score(ytest, ypred))
# %%
# ROC Curve chart
RocCurveDisplay.from_predictions(ytest, ypred)
# %%
#%% [markdown]
# ### Decision Tree
#%%
# read data frame
df = pd.read_csv('final.csv')
df.info()
print(df.head())
#%%
#full model
#define Xf:
Xf = df[['season' , 'habitat', 'does-bruise-or-bleed' ,'cap-color' ,'cap-diameter','ring-type', 'stem-width', 'cap-shape', 'gill-color',
'stem-height', 'stem-color', 'gill-attachment']]
#define yf:
yf = df["class"]
#%%
# one_hot_data
one_hot_data=pd.get_dummies(Xf,drop_first=True)
X_train, X_test, y_train, y_test = train_test_split(one_hot_data, yf, test_size=0.3 ,random_state=123)
#%%
# use a standard scale the features for processing
scaler=StandardScaler()
scale=scaler.fit(X_train)
X_train=scale.transform(X_train)
X_test=scale.transform(X_test)
#%%
# decision tree
dtree = DecisionTreeClassifier( criterion='gini', splitter='best', max_depth=3)
dtree = dtree.fit(X_train, y_train)
#%%
# plot of decision tree
tree.plot_tree(dtree)
plt.show()
#%%
# make prediction
y_pred=dtree.predict(X_test)
y_pred
#%%
# find accuracy score
score=accuracy_score(y_test, y_pred)
score
#%%
#creating a confusion matrix
confusion_matrix(y_test,y_pred)
#%%
#extracting TN, TP, FP, FN
tn, fp, fn, tp=confusion_matrix(y_test,y_pred).ravel()
(tn, fp, fn, tp)
# %%
# run classification report
conf_matrix= classification_report(y_test,y_pred)
print('Classification report; \n', conf_matrix)
print(confusion_matrix(y_test, dtree.predict(X_test)))
#%%
# make Confusion Matrix
y_pred = dtree.predict(X_test)
conf_matrix = confusion_matrix(y_true=y_test, y_pred=y_pred)
fig, ax = plt.subplots(figsize=(5, 5))
ax.matshow(conf_matrix, cmap=plt.cm.Oranges, alpha=0.3)
for i in range(conf_matrix.shape[0]):
for j in range(conf_matrix.shape[1]):
ax.text(x=j, y=i,s=conf_matrix[i, j], va='center', ha='center', size='xx-large')
plt.xlabel('Predictions', fontsize=18)
plt.ylabel('Actuals', fontsize=18)
plt.title('Confusion Matrix', fontsize=18)
plt.show()
# %%
def plot_roc_curve(y_test, y_pred):
fpr, tpr, thresholds = roc_curve(y_test, y_pred)
plt.plot(fpr, tpr)
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
# %%
#find AUC score
dtree_disp = RocCurveDisplay.from_estimator(dtree, X_test, y_test)
plt.show()
#%%
# Reduced model
#define X:
features=["ring-type","stem-width", "cap-shape", "gill-attachment", "stem-color", "gill-color", "stem-height"]
X = df[["ring-type","stem-width", "cap-shape", "gill-attachment", "stem-color", "gill-color", "stem-height"]]
#define y:
y = df["class"]
#%%
# one_hot_data
one_hot_data=pd.get_dummies(X,drop_first=True)
X_train, X_test, y_train, y_test = train_test_split(one_hot_data, y, test_size=0.3 ,random_state=123)
#%%
# use a standard scale the features for processing
scaler=StandardScaler()
scale=scaler.fit(X_train)
X_train=scale.transform(X_train)
X_test=scale.transform(X_test)
#%%
# decision tree
dtree = DecisionTreeClassifier( criterion='gini', splitter='best', max_depth=3)
dtree = dtree.fit(X_train, y_train)
#%%
# plot of decision tree
tree.plot_tree(dtree)
plt.show()
#%%
# make prediction
y_pred=dtree.predict(X_test)
y_pred
#%%
# find accuracy score
score=accuracy_score(y_test, y_pred)
score
#%%
#creating a confusion matrix
confusion_matrix(y_test,y_pred)
#%%
#extracting TN, TP, FP, FN
tn, fp, fn, tp=confusion_matrix(y_test,y_pred).ravel()
(tn, fp, fn, tp)
# %%
# run classification report
conf_matrix= classification_report(y_test,y_pred)
print('Classification report; \n', conf_matrix)
print(confusion_matrix(y_test, dtree.predict(X_test)))
#%%
# make Confusion Matrix
y_pred = dtree.predict(X_test)
conf_matrix = confusion_matrix(y_true=y_test, y_pred=y_pred)
fig, ax = plt.subplots(figsize=(5, 5))
ax.matshow(conf_matrix, cmap=plt.cm.Oranges, alpha=0.3)
for i in range(conf_matrix.shape[0]):
for j in range(conf_matrix.shape[1]):
ax.text(x=j, y=i,s=conf_matrix[i, j], va='center', ha='center', size='xx-large')
plt.xlabel('Predictions', fontsize=18)
plt.ylabel('Actuals', fontsize=18)
plt.title('Confusion Matrix', fontsize=18)
plt.show()
# %%
def plot_roc_curve(y_test, y_pred):
fpr, tpr, thresholds = roc_curve(y_test, y_pred)
plt.plot(fpr, tpr)
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
# %%
#find AUC score
dtree_disp = RocCurveDisplay.from_estimator(dtree, X_test, y_test)
plt.show()
#%% [markdown]
# ### Random Forest
#%%
df=pd.read_csv(r'final.csv')
df=df.drop(['Unnamed: 0','has-ring'],axis=1)
df.head()
#%%
df.shape
#%%
labelencoder=LabelEncoder()
columns=['cap-shape','cap-color','does-bruise-or-bleed','gill-attachment','gill-color','stem-color','ring-type','habitat','season','class']
for column in columns:
df[column] = labelencoder.fit_transform(df[column])
#%%
df.head()
#%%
features=["stem-width", "cap-shape", "gill-attachment", "stem-color", "gill-color", "stem-height","stem-width", "stem-height"]
prediction=['class']
#%%
X=df[features]
y=df[prediction]
#%%
# #### Train Test Split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.30,random_state=123)
#%%
# ### Random Forest Classifier
clf=RandomForestClassifier()
clf.fit(X_train,y_train)
y_pred=clf.predict(X_test)
#%%
print("Random Forest Classifier ACCURACY:",metrics.accuracy_score(y_test,y_pred))
#%%
print("Random Forest Classifier:\n",metrics.classification_report(y_test,y_pred))
#%%
model = RandomForestClassifier(max_depth=2, n_estimators=30,min_samples_split=3, max_leaf_nodes=5,random_state=22)
model.fit(X_train, y_train)
y_pred=model.predict(X_test)
print('Training Accuracy : ',metrics.accuracy_score(y_train,model.predict(X_train))*100)
print('Validation Accuracy : ',metrics.accuracy_score(y_test,model.predict(X_test))*100)
#%%
print("Random Forest Classifier:\n",metrics.classification_report(y_test,y_pred))
#%%
cf_mat = confusion_matrix(y_test, y_pred)
print(cf_mat)
sns.heatmap(cf_mat/np.sum(cf_mat), annot=True,
fmt='.2%', cmap='Blues')
#%%
conf_matrix = confusion_matrix(y_test,y_pred)
fig, ax = plt.subplots(figsize=(5, 5))
ax.matshow(conf_matrix, cmap=plt.cm.Oranges, alpha=0.3)
for i in range(conf_matrix.shape[0]):
for j in range(conf_matrix.shape[1]):
ax.text(x=j, y=i,s=conf_matrix[i, j], va='center', ha='center', size='xx-large')
plt.xlabel('Predictions', fontsize=18)
plt.ylabel('Actuals', fontsize=18)
plt.title('Confusion Matrix', fontsize=18)
plt.show()
#%%
# ### AUC - ROC Curve
fpr, tpr, thresholds = metrics.roc_curve(y_test, y_pred)
plt.plot(fpr, tpr)
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
#%%
auc = np.round(roc_auc_score(y_test, y_pred), 3)
print("AUC SCORE",format(auc))
#%% [markdown]
# ### SVM
#%%
# Read in the Mushroom Edibility dataset
df = pd.read_csv('final.csv')
df.info()
#%%
# Define predictors and target variables
# X = df.drop(['Unnamed: 0', 'class'], axis=1) #all predictors
X = df.drop(['Unnamed: 0', 'class', 'has-ring'], axis=1) # exclude has-ring
y = df["class"]
# Numerical predictors
numlist = ["stem-width", "stem-height","cap-diameter"] #all predictors
# Categorical predictors
catlist = X.columns.drop(numlist).to_list()
#%%
# Split and Preprocessing
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3 ,random_state=123)
#%%
# Standardization and binarization of target
X_Preprocessor = ColumnTransformer(
[
("numerical", StandardScaler(), numlist),
("categorical1", OneHotEncoder(), catlist)
],
verbose_feature_names_out=False,
sparse_threshold=0
)
X_train_std = pd.DataFrame(X_Preprocessor.fit_transform(X_train), columns=X_Preprocessor.fit(X_train).get_feature_names_out())
#X_train_std.head()
X_test_std = pd.DataFrame(X_Preprocessor.transform(X_test), columns=X_Preprocessor.fit(X_test).get_feature_names_out())
#X_test_std.head()
y_Preprocessor = LabelBinarizer().fit(y_train)
y_train_std = pd.DataFrame(y_Preprocessor.fit_transform(y_train), columns = ["class"])
#y_train_std.head()
y_test_std = pd.DataFrame(y_Preprocessor.transform(y_test), columns = ["class"])
#y_test_std.head()
#%%
# SVM Model w/ linear kernel
model1 = svm.SVC(kernel='linear')
model1.fit(X_train_std, np.ravel(y_train_std))
print(f'svc train score: {model1.score(X_train_std,np.ravel(y_train_std))}') # 0.7803639936371293
#%%
# SVM Model w/ RBF kernel - Default parameters
model2 = svm.SVC() # C=1, gamma='scale' = 0.08510638297872342
model2.fit(X_train_std, np.ravel(y_train_std))
print(f'svc train score: {model2.score(X_train_std,np.ravel(y_train_std))}') # 0.99319266398428
#%%
# Hyperparameter grid search - Takes ~90 mins to run!!
# Defining parameter range
param_grid = {'C': [0.1, 1, 10],
'gamma': [0.01, 1, 10],
'kernel': ['rbf']}
grid = GridSearchCV(svm.SVC(), param_grid, refit = True, verbose = 3, cv=3)
# fitting the model for grid search
grid.fit(X_train_std, np.ravel(y_train_std))
# print best parameter after tuning
print(grid.best_params_) #{'C': 10, 'gamma': 1, 'kernel': 'rbf'}
# print how our model looks after hyper-parameter tuning
print(grid.best_estimator_) #SVC(C=10, gamma=1)
#%%
# Best SVM Model
bestsvm = svm.SVC(C=10, gamma=1)
bestsvm.fit(X_train_std, np.ravel(y_train_std))
#%%
# Train score
print(f'svc train score: {bestsvm.score(X_train_std,np.ravel(y_train_std))}') #0.9988303546364742
#%%
# Model test set score
print(f'svc test score: {bestsvm.score(X_test_std,np.ravel(y_test_std))}') # 0.998526281316522
#%%
# Confusion Matrix
#print(confusion_matrix(y_test_std, bestsvm.predict(X_test_std)))
#[[ 8132 23]
#[ 4 10162]]
y_pred = bestsvm.predict(X_test_std)
conf_matrix = confusion_matrix(y_true=y_test_std, y_pred=y_pred)
fig, ax = plt.subplots(figsize=(5, 5))
ax.matshow(conf_matrix, cmap=plt.cm.Oranges, alpha=0.3)
for i in range(conf_matrix.shape[0]):
for j in range(conf_matrix.shape[1]):
ax.text(x=j, y=i,s=conf_matrix[i, j], va='center', ha='center', size='xx-large')
plt.xlabel('Predictions', fontsize=18)
plt.ylabel('Actuals', fontsize=18)
plt.title('Confusion Matrix', fontsize=18)
plt.show()
#%%
# Classification Report
print('Precision: %.3f' % precision_score(y_test_std, y_pred)) # Precision: 0.998
print('Recall: %.3f' % recall_score(y_test_std, y_pred)) # Recall: 1.000
print('Accuracy: %.3f' % accuracy_score(y_test_std, y_pred)) # Accuracy: 0.999
print('F1 Score: %.3f' % f1_score(y_test_std, y_pred)) # F1 Score: 0.999
#print(classification_report(y_test_std, bestsvm.predict(X_test_std)))
"""
precision recall f1-score support
0 1.00 1.00 1.00 8155
1 1.00 1.00 1.00 10166
accuracy 1.00 18321
macro avg 1.00 1.00 1.00 18321
weighted avg 1.00 1.00 1.00 18321
"""
#%%
# ROC/AUC Plot
svc_disp = RocCurveDisplay.from_estimator(bestsvm, X_test_std, y_test_std)
plt.show()
# SVC(AUC=1.00)
#%%