-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathpredict.py
282 lines (242 loc) · 9.67 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import argparse
import configparser
from collections import defaultdict
import itertools
import logging
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
import os
import random
import time
import numpy as np
import chainer
if chainer.backends.cuda.available:
import cupy as xp
else:
xp = np
from chainercv.utils import non_maximum_suppression
from PIL import ImageDraw, Image
from coco_dataset import get_coco_dataset
from mpii_dataset import get_mpii_dataset
from model import PoseProposalNet
from network_resnet import ResNet50
from utils import parse_size
COLOR_MAP = {}
DIRECTED_GRAPHS = [[]]
DATA_MODULE = None
def get_feature(model, image):
start = time.time()
image = xp.asarray(image)
processed_image = model.feature_layer.prepare(image)
resp, conf, x, y, w, h, e = model.predict(xp.expand_dims(processed_image, axis=0))
resp = chainer.backends.cuda.to_cpu(resp.array)
conf = chainer.backends.cuda.to_cpu(conf.array)
w = chainer.backends.cuda.to_cpu(w.array)
h = chainer.backends.cuda.to_cpu(h.array)
x = chainer.backends.cuda.to_cpu(x.array)
y = chainer.backends.cuda.to_cpu(y.array)
e = chainer.backends.cuda.to_cpu(e.array)
resp = np.squeeze(resp, axis=0)
conf = np.squeeze(conf, axis=0)
x = np.squeeze(x, axis=0)
y = np.squeeze(y, axis=0)
w = np.squeeze(w, axis=0)
h = np.squeeze(h, axis=0)
e = np.squeeze(e, axis=0)
logger.info('inference time {:.5f}'.format(time.time() - start))
return resp, conf, x, y, w, h, e
def estimate(model, image, detection_thresh=0.15, min_num_keypoints=-1):
feature_map = get_feature(model, image)
return get_humans_by_feature(model, feature_map, detection_thresh, min_num_keypoints)
def get_humans_by_feature(model, feature_map, detection_thresh=0.15, min_num_keypoints=-1):
resp, conf, x, y, w, h, e = feature_map
start = time.time()
delta = resp * conf
K = len(model.keypoint_names)
outW, outH = model.outsize
ROOT_NODE = 0 # instance
start = time.time()
rx, ry = model.restore_xy(x, y)
rw, rh = model.restore_size(w, h)
ymin, ymax = ry - rh / 2, ry + rh / 2
xmin, xmax = rx - rw / 2, rx + rw / 2
bbox = np.array([ymin, xmin, ymax, xmax])
bbox = bbox.transpose(1, 2, 3, 0)
root_bbox = bbox[ROOT_NODE]
score = delta[ROOT_NODE]
candidate = np.where(score > detection_thresh)
score = score[candidate]
root_bbox = root_bbox[candidate]
selected = non_maximum_suppression(
bbox=root_bbox, thresh=0.3, score=score)
root_bbox = root_bbox[selected]
logger.info('detect instance {:.5f}'.format(time.time() - start))
start = time.time()
humans = []
e = e.transpose(0, 3, 4, 1, 2)
ei = 0 # index of edges which contains ROOT_NODE as begin
# alchemy_on_humans
for hxw in zip(candidate[0][selected], candidate[1][selected]):
human = {ROOT_NODE: bbox[(ROOT_NODE, hxw[0], hxw[1])]} # initial
for graph in DIRECTED_GRAPHS:
eis, ts = graph
i_h, i_w = hxw
for ei, t in zip(eis, ts):
index = (ei, i_h, i_w) # must be tuple
u_ind = np.unravel_index(np.argmax(e[index]), e[index].shape)
j_h = i_h + u_ind[0] - model.local_grid_size[1] // 2
j_w = i_w + u_ind[1] - model.local_grid_size[0] // 2
if j_h < 0 or j_w < 0 or j_h >= outH or j_w >= outW:
break
if delta[t, j_h, j_w] < detection_thresh:
break
human[t] = bbox[(t, j_h, j_w)]
i_h, i_w = j_h, j_w
if min_num_keypoints <= len(human) - 1:
humans.append(human)
logger.info('alchemy time {:.5f}'.format(time.time() - start))
logger.info('num humans = {}'.format(len(humans)))
return humans
def draw_humans(keypoint_names, edges, pil_image, humans, mask=None, visbbox=True):
"""
This is what happens when you use alchemy on humans...
note that image should be PIL object
"""
start = time.time()
drawer = ImageDraw.Draw(pil_image)
for human in humans:
for k, b in human.items():
if mask:
fill = (255, 255, 255) if k == 0 else None
else:
fill = None
ymin, xmin, ymax, xmax = b
if k == 0: # human instance
# adjust size
t = 1
xmin = int(xmin * t + xmax * (1 - t))
xmax = int(xmin * (1 - t) + xmax * t)
ymin = int(ymin * t + ymax * (1 - t))
ymax = int(ymin * (1 - t) + ymax * t)
if mask:
resized = mask.resize(((xmax - xmin), (ymax - ymin)))
pil_image.paste(resized, (xmin, ymin), mask=resized)
else:
drawer.rectangle(xy=[xmin, ymin, xmax, ymax],
fill=fill,
outline=COLOR_MAP[keypoint_names[k]])
else:
if visbbox:
drawer.rectangle(xy=[xmin, ymin, xmax, ymax],
fill=fill,
outline=COLOR_MAP[keypoint_names[k]])
else:
r = 2
x = (xmin + xmax) / 2
y = (ymin + ymax) / 2
drawer.ellipse((x - r, y - r, x + r, y + r),
fill=COLOR_MAP[keypoint_names[k]])
for s, t in edges:
if s in human and t in human:
by = (human[s][0] + human[s][2]) / 2
bx = (human[s][1] + human[s][3]) / 2
ey = (human[t][0] + human[t][2]) / 2
ex = (human[t][1] + human[t][3]) / 2
drawer.line([bx, by, ex, ey],
fill=COLOR_MAP[keypoint_names[s]], width=3)
logger.info('draw humans {: .5f}'.format(time.time() - start))
return pil_image
def create_model(args, config):
global DIRECTED_GRAPHS, COLOR_MAP
dataset_type = config.get('dataset', 'type')
if dataset_type == 'mpii':
import mpii_dataset as x_dataset
elif dataset_type == 'coco':
import coco_dataset as x_dataset
else:
raise Exception('Unknown dataset {}'.format(dataset_type))
KEYPOINT_NAMES = x_dataset.KEYPOINT_NAMES
EDGES = x_dataset.EDGES
DIRECTED_GRAPHS = x_dataset.DIRECTED_GRAPHS
COLOR_MAP = x_dataset.COLOR_MAP
model = PoseProposalNet(
model_name=config.get('model_param', 'model_name'),
insize=parse_size(config.get('model_param', 'insize')),
keypoint_names=KEYPOINT_NAMES,
edges=np.array(EDGES),
local_grid_size=parse_size(config.get('model_param', 'local_grid_size')),
parts_scale=parse_size(config.get(dataset_type, 'parts_scale')),
instance_scale=parse_size(config.get(dataset_type, 'instance_scale')),
width_multiplier=config.getfloat('model_param', 'width_multiplier'),
)
result_dir = args.model
chainer.serializers.load_npz(
os.path.join(result_dir, 'bestmodel.npz'),
model
)
logger.info('cuda enable {}'.format(chainer.backends.cuda.available))
logger.info('ideep enable {}'.format(chainer.backends.intel64.is_ideep_available()))
if chainer.backends.cuda.available:
logger.info('gpu mode')
model.to_gpu()
elif chainer.backends.intel64.is_ideep_available():
logger.info('Indel64 mode')
model.to_intel64()
return model
def load_config(args):
config = configparser.ConfigParser()
config_path = os.path.join(args.model, 'src', 'config.ini')
logger.info(config_path)
config.read(config_path, 'UTF-8')
return config
def predict(args):
config = load_config(args)
detection_thresh = config.getfloat('predict', 'detection_thresh')
min_num_keypoints = config.getint('predict', 'min_num_keypoints')
dataset_type = config.get('dataset', 'type')
logger.info('loading {}'.format(dataset_type))
if dataset_type == 'mpii':
_, test_set = get_mpii_dataset(
insize=parse_size(config.get('model_param', 'insize')),
image_root=config.get(dataset_type, 'images'),
annotations=config.get(dataset_type, 'annotations'),
train_size=config.getfloat(dataset_type, 'train_size'),
min_num_keypoints=config.getint(dataset_type, 'min_num_keypoints'),
seed=config.getint('training_param', 'seed'),
)
elif dataset_type == 'coco':
test_set = get_coco_dataset(
insize=parse_size(config.get('model_param', 'insize')),
image_root=config.get(dataset_type, 'val_images'),
annotations=config.get(dataset_type, 'val_annotations'),
min_num_keypoints=config.getint(dataset_type, 'min_num_keypoints'),
)
else:
raise Exception('Unknown dataset {}'.format(dataset_type))
model = create_model(args, config)
idx = random.choice(range(len(test_set)))
image = test_set.get_example(idx)['image']
humans = estimate(
model,
image.astype(np.float32),
detection_thresh,
min_num_keypoints,
)
pil_image = Image.fromarray(image.transpose(1, 2, 0).astype(np.uint8))
pil_image = draw_humans(
keypoint_names=model.keypoint_names,
edges=model.edges,
pil_image=pil_image,
humans=humans,
visbbox=config.getboolean('predict', 'visbbox')
)
pil_image.save('result.png', 'PNG')
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('model', help='path/to/model', type=str)
return parser.parse_args()
def main():
args = parse_arguments()
predict(args)
if __name__ == '__main__':
main()