-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathmulti_city_script.R
464 lines (400 loc) · 21.1 KB
/
multi_city_script.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
#' Main script to run ITHIM Global in constant mode
#'
#' Script to run ITHIM Global using constant input parameters. Outputs the health impacts associated with transport in a given city
#' via an air pollution, physical activity and injury pathway.
#'
#' The ITHIM Global main script works as follows:
#'
#' - the following variables need to be defined before running the script:
#' - the name(s) of the city or cities for which the model is to be run
#' - The input parameter file name containing the global and local input parameters
#' - author name, output version number and any comments that are to be written to the OutputVersionControl.txt file
#' documenting the key aspects of the model run (timestamp, author name, cities
#' for which model was run, input parameter file name, output version number,
#' number of samples which equals to 1 here as the model is run in constant mode,
#' and any comments)
#' - The scenarios need defining by:
#' - updating the character defining which scenario script is to be called
#' - giving the reference scenario against which all other scenarios are compared,
#' this reference scenario needs to be the scenario name which corresponds to the current input parameter files
#' - giving the percentage increase in each mode for the BOGOTA (GLOBAL, LATAM, and AFRICA_INDIA) scenarios
#' - the name of the diseases considered in the output plot need defining. Note that no more than 6 diseases
#' can be plotted at the same time and if the script is run for many cities at once (roughly > 10),
#' the plot gets overcrowded
#'
#' - the remainder of the code does not need to be changed:
#'
#' - local and global input parameters from the input parameter spreadsheet are read in and put into the correct format needed
#' for the model run
#'
#' - The run_ithim_setup.R script is called which prepares the input data needed for the health impact assessment
#'
#' - The run_ithim.R script is called which performs the health impact assessment
#'
#' - output results are stored for plotting of the results
#'
#' - an output plot is created
#'
#' - the following output files are saved:
#' - OutputVersionControl.txt documenting the key aspects of the model run (main folder)
#' - the ithim_objects list containing the key input files and the health burden results
#' is stored in results/multi_city/io.rds
#'
#'
#'
#'
rm(list=ls())
library(ithimr)
library(readxl)
library(truncnorm)
library(tidyverse)
library(janitor)
# Disable scientific notation
options(scipen = 999)
if (!require("drpa",character.only = TRUE)) {
print('Installing "drpa" package...')
remotes::install_github("meta-analyses/drpa")
library(drpa)
print("")
}
cities <- 'bogota'
input_parameter_file <- "Bogota_InputParameters_v4.0.xlsx" # file containing the local and global input parameters
#
## Get the current repo sha
gitArgs <- c("rev-parse", "--short", "HEAD", ">", file.path("repo_sha"))
# Use shell command for Windows as it's failing with system2 for Windows (giving status 128)
if (.Platform$OS.type == "windows"){
shell(paste(append("git", gitArgs), collapse = " "), wait = T)
} else {
system2("git", gitArgs, wait = T)
}
repo_sha <- as.character(readLines(file.path("repo_sha")))
# records the main aspects of an ithim run in the OutputVersionControl.txt document
# text file records timestamp of run, author name, cities the script is run for,
# the input parameter file version used, the output version,
# the number of samples (which is 1 in constant mode), the path to any other input files,
# any comments and the runtime of the code
write_output_control = T # whether you want to save the model run specifics or not
output_version <- paste0(repo_sha, "_test_run") # gives the version number of the output documents, independent of the input parameter file name
author <- "AA"
comment <- "Set auto_rickshaw speed to 4, same as default speed in model"
# scenario definition
scenario_name <- "BOGOTA" # name of scenario to be called
# scenario the other scenarios are compared to, the reference scenario name should always
# be the name of the scenario corresponding to the actual baseline burden of disease and
# other input data for the city
reference_scenario <- 'Baseline'
scenario_increase <- 0.05 # increase for each mode in each scenario (used in GLOBAL, BOGOTA, LATAM and AFRICA_INDIA scenarios)
# define which output results to plot
# potential outputs (in yll for all scenarios): c('pa_ap_all_cause', 'pa_ap_IHD', 'pa_total_cancer', 'pa_ap_lung_cancer', 'ap_COPD',
# 'pa_ap_stroke', 'pa_ap_T2D', 'ap_LRI', 'pa_breast_cancer', 'pa_colon_cancer', 'pa_endo_cancer',
# 'pa_liver_cancer', 'pa_ap_CVD', 'pa_total_dementia', 'pa_myeloma', 'pa_Parkinson',
# 'pa_head_neck_cancer', 'pa_stomach_cancer', 'inj')
outputs_to_plot <- c('pa_ap_all_cause', 'pa_ap_IHD', 'pa_total_cancer', 'pa_ap_lung_cancer', 'ap_COPD',
'pa_ap_stroke', 'pa_ap_T2D', 'ap_LRI', 'pa_breast_cancer', 'pa_colon_cancer', 'pa_endo_cancer',
'pa_liver_cancer', 'pa_ap_CVD', 'pa_total_dementia', 'pa_myeloma', 'pa_Parkinson',
'pa_head_neck_cancer', 'pa_stomach_cancer', 'inj')
############################### No need to change the following ##################################
compute_mode <- 'constant' # constant parameters from the given parameters
# keep record when code started:
starttime <- Sys.time()
# read in local input parameters
all_inputs <- read_excel(input_parameter_file, sheet = "all_city_parameter_inputs")
all_inputs[is.na(all_inputs)] <- ""
all_inputs <- as.data.frame(all_inputs)
# get input parameters into correct format
parameter_names <- all_inputs$parameter
parameter_starts <- which(parameter_names!='')
parameter_stops <- c(parameter_starts[-1] - 1, nrow(all_inputs))
parameter_names <- parameter_names[parameter_names!='']
parameter_list <- list()
for(i in 1:length(parameter_names)){
parameter_list[[parameter_names[i]]] <- list()
parameter_index <- which(all_inputs$parameter==parameter_names[i])
if(all_inputs[parameter_index,2]=='') {
parameter_list[[parameter_names[i]]] <- lapply(cities,function(x) {
city_index <- which(colnames(all_inputs)==x)
val <- all_inputs[parameter_index,city_index]
ifelse(val%in%c('T','F'),val,ifelse(is.numeric(val), as.numeric(val), as.character(val)))
})
names(parameter_list[[parameter_names[i]]]) <- cities
}else if(all_inputs[parameter_index,2]=='constant'){
if (compute_mode != 'sample'){
indices <- 0
parameter_list[[parameter_names[i]]] <- lapply(cities,function(x) {
city_index <- which(colnames(all_inputs)==x)
val <- all_inputs[parameter_index+indices,city_index]
ifelse(val=='',0,as.numeric(val))
})
}
if(compute_mode=='sample'){ # if sampling from distribution, check that distribution parameters exist
parameter_list[[parameter_names[i]]] <- lapply(cities,function(x) {
indices <- 1:2
city_index <- which(colnames(all_inputs)==x)
val <- all_inputs[parameter_index+indices,city_index]
if (val[1] == '' & val[2]==''){ # if no distribution parameters given in input file, read in constant value instead
indices <-0
city_index <- which(colnames(all_inputs)==x)
val <- all_inputs[parameter_index+indices,city_index]}
val <- as.numeric(val)
})
}
names(parameter_list[[parameter_names[i]]]) <- cities
}else{
parameter_list[[parameter_names[i]]] <- lapply(cities,function(x) {
city_index <- which(colnames(all_inputs)==x)
if(any(all_inputs[parameter_starts[i]:parameter_stops[i],city_index]!='')){
sublist_indices <- which(all_inputs[parameter_starts[i]:parameter_stops[i],city_index]!='')
thing <- as.list(as.numeric(c(all_inputs[parameter_starts[i]:parameter_stops[i],city_index])[sublist_indices]))
names(thing) <- c(all_inputs[parameter_starts[i]:parameter_stops[i],2])[sublist_indices]
thing
}
}
)
names(parameter_list[[parameter_names[i]]]) <- cities
}
}
# write input parameters to global environment
list2env(parameter_list, environment())
# read in global parameters
all_global_inputs <- read_excel(input_parameter_file, sheet = "all_global_parameter_inputs")
all_global_inputs[is.na(all_global_inputs)] <- ""
all_global_inputs <- as.data.frame(all_global_inputs)
# get input parameters into correct format
global_parameter_names <- all_global_inputs$parameter
global_parameter_starts <- which(global_parameter_names!='')
global_parameter_stops <- c(global_parameter_starts[-1] - 1, nrow(all_global_inputs))
global_parameter_names <- global_parameter_names[global_parameter_names!='']
global_parameter_list <- list()
for(i in 1:length(global_parameter_names)){
global_parameter_list[[global_parameter_names[i]]] <- list()
global_parameter_index <- which(all_global_inputs$parameter==global_parameter_names[i])
if(all_global_inputs[global_parameter_index,2]=='') {
global_parameter_list[[global_parameter_names[i]]] <- all_global_inputs[global_parameter_index,'global']
}else if(all_global_inputs[global_parameter_index,2]=='constant'){
if (compute_mode != 'sample'){
global_parameter_list[[global_parameter_names[i]]] <- ifelse(all_global_inputs[global_parameter_index,'global']=='',
0,as.numeric(all_global_inputs[global_parameter_index,'global']))
}
else if(compute_mode=='sample'){ # if sampling from distribution, check that distribution parameters exist
indices <- 1:2
val <- all_global_inputs[global_parameter_index+indices,'global']
if (val[1] == '' & val[2]==''){ # if no distribution parameters given in input file, read in constant value instead
val <- all_global_inputs[global_parameter_index,'global']}
val <- as.numeric(val)
global_parameter_list[[global_parameter_names[i]]] <- val
}
}
}
list2env(global_parameter_list, environment()) # write input parameters to global environment
# update the format of some of the global parameters
dist_cat <- unlist(strsplit(gsub(" ", "", dist_cat, fixed = TRUE), "\\,"))
outcome_age_min <- as.numeric(unlist(strsplit(gsub(" ", "", outcome_age_min, fixed = TRUE), "\\,")))
outcome_age_max <- as.numeric(unlist(strsplit(gsub(" ", "", outcome_age_max, fixed = TRUE), "\\,")))
outcome_age_groups <- unlist(strsplit(gsub(" ", "", outcome_age_groups, fixed = TRUE), "\\,"))
min_age <- as.numeric(min_age)
max_age <- as.numeric(max_age)
################################### Start running the the actual analysis
# logical for PA dose response: set F - use quantile 0.5
pa_dr_quantile <- F
# logical for AP dose response: set F - use quantile 0.5
ap_dr_quantile <- F
ithim_objects <- outcome <- outcome_pp <- yll_per_hundred_thousand <- list()
print(system.time(for(city in cities){
cat('\n')
print(city)
# run code to prepare the input data for the actual ITHIM Global health impact assessment
ithim_objects[[city]] <- run_ithim_setup(
DIST_CAT = as.character(dist_cat),
ADD_WALK_TO_PT_TRIPS = as.logical(add_walk_to_pt_trips[[city]]),
CITY = city,
AGE_RANGE = c(min_age,max_age),
TREAT_TAXI_AS_CAR = as.logical(treat_taxi_as_car[[city]]),
ADD_TRUCK_DRIVERS = as.logical(add_truck_drivers),
ADD_BUS_DRIVERS = as.logical(add_bus_drivers),
ADD_CAR_DRIVERS = as.logical(add_car_drivers),
ADD_MOTORCYCLE_FLEET = as.logical(add_motorcycle_fleet[[city]]),
ADD_PERSONAL_MOTORCYCLE_TRIPS = as.character(add_personal_motorcycle_trips[[city]]),
PM_emission_inventory = PM_emission_inventories[[city]],
CO2_emission_inventory = CO2_emission_inventories[[city]],
speeds = speeds[[city]],
FLEET_TO_MOTORCYCLE_RATIO = fleet_to_motorcycle_ratio[[city]],
PROPORTION_MOTORCYCLE_TRIPS = proportion_motorcycle_trips[[city]],
CYCLING_MMET = cycling_mmet,
WALKING_MMET = walking_mmet,
PASSENGER_MMET = passenger_mmet,
CAR_DRIVER_MMET = car_driver_mmet,
MOTORCYCLIST_MMET = motorcyclist_mmet,
SEDENTARY_ACTIVITY_MMET = sedentary_activity_mmet,
LIGHT_ACTIVITY_MMET = light_activity_mmet,
MODERATE_PA_MMET = moderate_pa_mmet,
VIGOROUS_PA_MMET = vigorous_pa_mmet,
DAY_TO_WEEK_TRAVEL_SCALAR = as.numeric(day_to_week_scalar[[city]]),
SIN_EXPONENT_SUM = sin_exponent_sum,
CASUALTY_EXPONENT_FRACTION = casualty_exponent_fraction,
SIN_EXPONENT_SUM_NOV = sin_exponent_sum_nov,
SIN_EXPONENT_SUM_CYCLE = sin_exponent_sum_cycle,
CASUALTY_EXPONENT_FRACTION_CYCLE = casualty_exponent_fraction_cycle,
SIN_EXPONENT_SUM_PED = sin_exponent_sum_ped,
CASUALTY_EXPONENT_FRACTION_PED = casualty_exponent_fraction_ped,
SIN_EXPONENT_SUM_VEH = sin_exponent_sum_veh,
CASUALTY_EXPONENT_FRACTION_VEH = casualty_exponent_fraction_veh,
CALL_INDIVIDUAL_SIN = as.logical(call_individual_sin),
PA_DOSE_RESPONSE_QUANTILE = pa_dr_quantile,
AP_DOSE_RESPONSE_QUANTILE = ap_dr_quantile,
INJURY_REPORTING_RATE = injury_reporting_rate[[city]],
CHRONIC_DISEASE_SCALAR = chronic_disease_scalar[[city]],
PM_CONC_BASE = pm_conc_base[[city]],
PM_TRANS_SHARE = pm_trans_share[[city]],
BACKGROUND_PA_SCALAR = background_pa_scalar[[city]],
BUS_WALK_TIME = bus_walk_time[[city]],
RAIL_WALK_TIME = rail_walk_time[[city]],
BUS_TO_PASSENGER_RATIO = bus_to_passenger_ratio[[city]],
TRUCK_TO_CAR_RATIO = truck_to_car_ratio[[city]],
CAR_OCCUPANCY_RATIO = car_occupancy_ratio[[city]],
SCENARIO_NAME = scenario_name,
SCENARIO_INCREASE = scenario_increase,
BUS_DRIVER_PROP_MALE = as.numeric(bus_driver_prop_male[[city]]),
BUS_DRIVER_MALE_AGERANGE = bus_driver_male_agerange[[city]],
BUS_DRIVER_FEMALE_AGERANGE = bus_driver_female_agerange[[city]],
TRUCK_DRIVER_PROP_MALE = as.numeric(truck_driver_prop_male[[city]]),
TRUCK_DRIVER_MALE_AGERANGE = truck_driver_male_agerange[[city]],
TRUCK_DRIVER_FEMALE_AGERANGE = truck_driver_female_agerange[[city]],
COMMERCIAL_MBIKE_PROP_MALE = as.numeric(commerical_mbike_prop_male[[city]]),
COMMERCIAL_MBIKE_MALE_AGERANGE = commerical_mbike_male_agerange[[city]],
COMMERCIAL_MBIKE_FEMALE_AGERANGE = commerical_mbike_female_agerange[[city]],
MINIMUM_PT_TIME = as.numeric(minimum_pt_time),
MODERATE_PA_CONTRIBUTION = as.numeric(moderate_pa_contribution)
)
# add additional information to the ithim_objects list storing the key input and output data
ithim_objects$scen_prop <- SCENARIO_PROPORTIONS
ithim_objects[[city]]$demographic <- DEMOGRAPHIC
ithim_objects[[city]]$base_pop <- BASELINE_POPULATION
# run the ITHIM-Global health impact assessment
ithim_objects[[city]]$outcomes <- run_ithim(ithim_object=ithim_objects[[city]], seed = 1)
# add further information to the ithim_objects list
ithim_objects[[city]]$disease_burden <- DISEASE_BURDEN
ithim_objects[[city]]$PM_emission_inventory <- PM_EMISSION_INVENTORY
ithim_objects[[city]]$injury_table <- INJURY_TABLE
ithim_objects[[city]]$orig_inj <- list()
ithim_objects[[city]]$orig_inj$inj_orig_1year <- inj_orig_1year
ithim_objects[[city]]$orig_inj$inj_orig_1year_injreprate <- inj_orig_1year_injreprate
ithim_objects[[city]]$vehicle_inventory <- VEHICLE_INVENTORY
ithim_objects[[city]]$location$country <- country[[CITY]]
ithim_objects[[city]]$location$continent <- continent[[CITY]]
ithim_objects[[city]]$new_walk_trips_count <- list()
ithim_objects[[city]]$new_walk_trips_count$all <- count_new_walk_trips
ithim_objects[[city]]$new_walk_trips_count$bus <- count_new_walk_trips_bus
ithim_objects[[city]]$new_walk_trips_count$rail <- count_new_walk_trips_rail
# store results to plot
min_ages <- sapply(ithim_objects[[city]]$outcome$hb$ylls$age_cat,function(x)as.numeric(strsplit(x,'-')[[1]][1]))
max_ages <- sapply(ithim_objects[[city]]$outcome$hb$ylls$age_cat,function(x)as.numeric(strsplit(x,'-')[[1]][2]))
sub_outcome <- subset(ithim_objects[[city]]$outcome$hb$ylls,
min_ages >= min_age & max_ages <= max_age)
# all results without upper and lower confidence interval limit values
sub_outcome_noLimits <- sub_outcome %>% dplyr::select(-contains(c('lb','ub')))
# results for plotting without upper and lower confidence interval limit values
sub_outcomes_plot <- sub_outcome_noLimits %>% dplyr::select(contains(outputs_to_plot))
# replace column names with 'yll_' with 'ylls_'
colnames(sub_outcomes_plot) <- sub("yll_", "ylls_", colnames(sub_outcomes_plot))
result_mat_plot <- colSums(sub_outcomes_plot)
# find number of disease to plot and create a list with all the different disease outcomes for the different scenarios
columns <- length(result_mat_plot)
nDiseases <- columns/NSCEN
if (city == cities[1]) {
disease_list <- list()
for (i in 1:nDiseases) disease_list[[i]] <- matrix(0, NSCEN, ncol = length(cities))
}
min_pop_ages <- sapply(DEMOGRAPHIC$age,function(x)as.numeric(strsplit(x,'-')[[1]][1]))
max_pop_ages <- sapply(DEMOGRAPHIC$age,function(x)as.numeric(strsplit(x,'-')[[1]][2]))
for (i in 1:nDiseases)
disease_list[[i]][,which(cities == city)] <- result_mat_plot[1:NSCEN + (i - 1) * NSCEN]/sum(subset(DEMOGRAPHIC,min_pop_ages >= min_age & max_pop_ages <= max_age)$population)
}))
# add run relevant information to ithim_objects list
timestamp <- Sys.time()
ithim_objects$ithim_run <- list()
ithim_objects$ithim_run$input_parameter_file <- input_parameter_file
ithim_objects$ithim_run$scenarios_used <- scenario_name
ithim_objects$ithim_run$reference_scenario <- reference_scenario
ithim_objects$ithim_run$scenario_increase <- scenario_increase
ithim_objects$ithim_run$scenario_names <- SCEN
ithim_objects$ithim_run$compute_mode <- compute_mode
ithim_objects$ithim_run$timestamp <- timestamp
ithim_objects$ithim_run$output_version <- output_version
ithim_objects$ithim_run$author <- author
ithim_objects$ithim_run$comment <- comment
# ##### Create the output plots
# # loop through diseases and plot 6 diseases per output plot
#
# # find number of total graphics windows
# no_plots <- floor(length(outputs_to_plot) / 6)
# if (length(outputs_to_plot)/6 > no_plots)
# no_plots <- no_plots + 1
#
# for (j in 1:no_plots){
# # extract the disease results for this particular subplot
# result_mat_plot_sub <- result_mat_plot[(NSCEN*(j-1)*6+1) : (NSCEN*(j-1)*6 + NSCEN*6)]
#
# # remove any NA
# result_mat_plot_sub <- result_mat_plot_sub[!is.na(result_mat_plot_sub)]
#
# # find number of diseases considered in respective graphics window
# nDiseases_sub <- length(result_mat_plot_sub)/NSCEN
#
# # open graphic window
# {x11(width = 10, height = 8);
# #layout.matrix <- matrix(c(2:6,1,7:12), nrow = 2, ncol = 6,byrow = T)
# layout.matrix <- matrix(c(1:6), nrow = 2, ncol = 3,byrow = T)
# graphics::layout(mat = layout.matrix, heights = c(2,2),
# #widths = c(2.8,2,2,2,2,2.5))
# widths = c(2,2,2))
# cols <- rainbow(length(cities)) # define colours
# mar1 <- rep(2.5, 6); # define bottom margin
# mar2 <- rep(2, 6); mar2[c(1,4)] <- 6 # define margin left of plots
#
# for (i in 1:nDiseases_sub) {
# #ylim <- if (i %in% c(1,4)) range(disease_list[[i]]) else c(-11,4)*1e-4
# ylim <- range(disease_list[[i + 6*(j -1)]])
# par(mar = c(mar1[i], mar2[i], 6, 1)) # define margins
# barplot(t(disease_list[[i + 6*(j -1)]]), ylim = ylim, las = 2, beside = T,
# col = cols,
# main = paste0(last(strsplit(names(result_mat_plot_sub)[i * NSCEN], 'ylls_')[[1]])),
# yaxt='n') # create boxplot
#
# # add y-axis label
# axis(2,cex.axis=1.5);
# if(i%in%c(1,4)) mtext(side=2,'YLL gain per person',line=3)
#
# # add city legend
# if (i == 1 ) legend(legend = cities, fill = cols, bty = 'n',
# y = ylim[2], x = (length(cities)+ 1.5), cex = 0.9)
# # add scenario names
# scen_names_only <- c()
# for (i in 1:NSCEN)
# scen_names_only <- paste0(scen_names_only," ", SCEN_SHORT_NAME[i+1], " ")
# mtext(side = 1, scen_names_only, line = 1, cex = 0.8)
# }
# }
# }
saveRDS(ithim_objects, paste0("results/multi_city/io_",output_version,".rds"), version = 2)
# add to output control document
if (write_output_control == TRUE){
input_version <- input_parameter_file
global_path <- paste0(file.path(find.package('ithimr',lib.loc = .libPaths()),
'extdata/global'), "/")
cat("",
paste(timestamp, "by", author, sep = " "),
paste("Scenario:", SCENARIO_INCREASE * 100, "%", sep = " "),
paste("Cities:", cities, sep = " "),
paste("Input parameter file:", input_version, sep = " "),
paste("Version number of outputs:", output_version, sep = " "),
paste("Number of samples:", '1', sep = " "),
paste("Comments:", comment, sep=" "),
paste("Path of other input files:", global_path, sep=" "),
file="OutputVersionControl.txt",sep="\n",append=TRUE)
# record time it took to run code
endtime <- Sys.time()
runtime <- round(as.numeric(difftime(endtime, starttime, units = "mins")),2)
cat(paste("Runtime in minutes:", runtime, sep=" "),
file="OutputVersionControl.txt",sep="\n",append=TRUE)
}