-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrainval_net_fcos.py
284 lines (228 loc) · 9.41 KB
/
trainval_net_fcos.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import datetime
import os
import time
import torch
import torch.utils.data
from fpn_utils.faster_rcnn_fpn import FasterRCNN
import fpn_utils.utils as utils
import math, sys
from fcos_utils.fcos import FCOS
from utils.argutils import parse_training_args, parse_general_args
from utils.utils import get_loaders_100doh
from tqdm import tqdm
from utils.evaluation.evalutils import AverageMeters
from utils.exputils.monitoring import Monitor
import numpy as np
def collate_fn(batch):
return tuple(zip(*batch))
def train_one_epoch(model, optimizer, data_loader, device, epoch, args, scaler=None):
model.train()
avg_meters = AverageMeters()
time_meters = AverageMeters()
pbar = tqdm(data_loader)
lr_scheduler = None
if epoch == 0:
warmup_factor = 1.0 / 1000
warmup_iters = min(1000, len(data_loader) - 1)
lr_scheduler = torch.optim.lr_scheduler.LinearLR(
optimizer, start_factor=warmup_factor, total_iters=warmup_iters
)
#for idx, (images, targets) in enumerate(tqdm(data_loader)):
for idx, (images, targets) in enumerate(pbar):
end = time.time()
images = list(image.to(device) for image in images)
targets = list(targets)
if 'res' in args.net:
for idx, t in enumerate(targets):
new_t = {}
for k, v in t.items():
v[v==-1.] = 0.
new_t[k] = v.to(device)
targets[idx] = new_t
else:
targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
with torch.cuda.amp.autocast(enabled=scaler is not None):
loss_dict = model(images, targets)
losses = sum(loss for loss in loss_dict.values())
loss_value = losses.item()
if not math.isfinite(loss_value):
print(f"Loss is {loss_value}, stopping training")
print(loss_dict)
sys.exit(1)
optimizer.zero_grad()
if scaler is not None:
scaler.scale(losses).backward()
scaler.step(optimizer)
scaler.update()
else:
losses.backward()
optimizer.step()
if lr_scheduler is not None:
lr_scheduler.step()
for key, val in loss_dict.items():
if val is not None:
avg_meters.add_loss_value(key, val.item())
time_meters.add_loss_value("batch_time", time.time() - end)
avg_meters.add_loss_value("total_loss", loss_value)
# pbar with loss
pbar.set_postfix({
'Batch Time': time_meters.average_meters['batch_time'].avg,
'Loss' : avg_meters.average_meters['total_loss'].avg,
'Epoch': epoch
})
return avg_meters
def reshape_output(outputs):
for output in outputs:
N = output['boxes'].shape[0]
output['boxes'] = output['boxes'].reshape(N, 4)
output['labels'] = output['labels'].reshape(N, 1)
output['scores'] = output['scores'].reshape(N, 1)
output['contacts'] = output['contacts'].reshape(N, 1)
output['dxdymags'] = output['dxdymags'].reshape(N, 3)
output['sides'] = output['sides'].reshape(N, 1)
return outputs
def evaluate(model, data_loader, imdb, args, device):
if args.net != 'fcos':
output_dir = os.path.join('output/', args.net, imdb.name, '_fpn')
else:
output_dir = os.path.join('output/', args.net, imdb.name)
os.makedirs(output_dir, exist_ok=True)
model.eval()
metric_logger = utils.MetricLogger(delimiter=" ")
all_boxes = [[[] for _ in range(len(data_loader.dataset))] for _ in range(imdb.num_classes)]
empty_array = np.transpose(np.array([[],[],[],[],[]]), (1,0))
time_meters = AverageMeters()
with torch.inference_mode():
for images, targets in tqdm(data_loader):
images = list(img.to(device) for img in images)
if torch.cuda.is_available():
torch.cuda.synchronize()
model_time = time.time()
outputs = model(images)
model_time = time.time() - model_time
time_meters.add_loss_value("model_time", model_time)
obj_ind = [torch.nonzero( (t['scores'] > 0.1) & (t['labels'] == 1) ).squeeze() for t in outputs]
hand_ind = [torch.nonzero( (t['scores'] > 0.1) & (t['labels'] == 2) ).squeeze() for t in outputs]
outputs = reshape_output(outputs)
obj_final = [
torch.cat((
t['boxes'][i],
t['scores'][i],
t['contacts'][i],
t['dxdymags'][i],
t['sides'][i],
torch.ones_like(t['sides'][i]) # filler for nc_prob
), -1).reshape(-1, 11).cpu().numpy()
for t, i in zip(outputs, obj_ind)
]
hand_final = [
torch.cat((
t['boxes'][i],
t['scores'][i],
t['contacts'][i],
t['dxdymags'][i],
t['sides'][i],
torch.ones_like(t['sides'][i]) # filler for nc_prob
), -1).reshape(-1, 11).cpu().numpy()
for t, i in zip(outputs, hand_ind)
]
ids = [t['image_id'].item() for t in targets]
for idx, id in enumerate(ids):
if obj_final[idx].size == 0:
all_boxes[1][id] = empty_array
if hand_final[idx].size == 0:
all_boxes[2][id] = empty_array
else:
all_boxes[1][id] = obj_final[idx]
all_boxes[2][id] = hand_final[idx]
# gather the stats from all processes
imdb.evaluate_detections(all_boxes, output_dir)
print("FPS:", 1.0 / time_meters.average_meters["model_time"].avg)
def main(args):
device = torch.device(args.device)
output_dir = args.output_dir
data_loader, data_loader_test, imdb, imdb_test, num_classes = get_loaders_100doh(args)
print("Creating model")
#backbone = backbonefpn
if args.net == 'fcos':
model = FCOS(num_classes=num_classes, nms_thresh=0.5)
else:
model = FasterRCNN(num_classes=num_classes, num_layers=int(args.net[3:]))
model = model.to(device)
hosting_folder = os.path.join(args.output_dir, "hosting")
monitor = Monitor(args.output_dir, hosting_folder=hosting_folder)
params = [p for p in model.parameters() if p.requires_grad]
if args.optimizer == 'sgd':
optimizer = torch.optim.SGD(
params, lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
elif args.optimizer == 'adamw':
optimizer = torch.optim.AdamW(
params, lr=args.lr, weight_decay=args.weight_decay)
scaler = torch.cuda.amp.GradScaler() if args.amp else None
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.lr_steps, gamma=args.lr_gamma)
if args.resume:
checkpoint = torch.load(args.resume, map_location="cpu")
model.load_state_dict(checkpoint["model"])
optimizer.load_state_dict(checkpoint["optimizer"])
lr_scheduler.load_state_dict(checkpoint["lr_scheduler"])
args.start_epoch = checkpoint["epoch"] + 1
if args.amp:
scaler.load_state_dict(checkpoint["scaler"])
if args.test_only:
evaluate(model, data_loader_test, imdb_test, args, device=device)
return
print("Start training")
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs+1):
train_avg_meters = train_one_epoch(
model,
optimizer,
data_loader,
device,
epoch,
args,
scaler,
)
lr_scheduler.step()
if args.output_dir:
checkpoint = {
"model": model.state_dict(),
"optimizer": optimizer.state_dict(),
"lr_scheduler": lr_scheduler.state_dict(),
"args": args,
"epoch": epoch,
}
if args.amp:
checkpoint["scaler"] = scaler.state_dict()
save_name = os.path.join(output_dir, f'detector_{args.session}_{epoch}.pth')
torch.save(checkpoint, save_name)
train_dict = {
meter_name: meter.avg
for (
meter_name,
meter,
) in train_avg_meters.average_meters.items()
}
train_full_dict = {**train_dict}
monitor.log_train(epoch, train_full_dict)
save_dict = {}
for key in train_full_dict:
save_dict[key] = {}
save_dict[key]["train"] = train_full_dict[key]
monitor.metrics.save_metrics(epoch, save_dict)
monitor.metrics.plot_metrics(epoch)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print(f"Training time {total_time_str}")
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description='Hand Object Detector with FPN (All ResNets) or FCOS')
parse_general_args(parser)
parse_training_args(parser)
args = parser.parse_args()
args.output_dir = args.save_dir + "/" + args.net
if 'res' in args.net :
args.output_dir += "_fpn"
print(f'\n---------> model output_dir = {args.output_dir}\n')
os.makedirs(args.output_dir, exist_ok=True)
main(args)