Skip to content

Latest commit

 

History

History
175 lines (121 loc) · 4.29 KB

README.md

File metadata and controls

175 lines (121 loc) · 4.29 KB

KERNEL ARMA for RVM and SVM

Version: 1.1
Release Date: February 20, 2006

Description

This repository provides implementations for nonlinear system identification using:

  • Relevance Vector Machines (RVM) with KARMA methods (Kernel ARMA).
  • Support Vector Machines (SVM) for regression and signal estimation.

It includes advanced composite kernels and solvers such as:

  • Kernel Ridge Regression (KRR)
  • Support Vector Regression (SVR)
  • Relevance Vector Machines (RVMs)

These methods are based on the following references:

  1. Nonlinear system identification with composite relevance vector machines
    Camps-Valls, G., Martínez-Ramón, M., Rojo-Álvarez, J.L., Muñoz-Marí, J.
    IEEE Signal Processing Letters, 14(4): 279-282, 2007.

  2. A unified SVM framework for signal estimation
    Rojo-Álvarez, J.L., Martínez-Ramón, M., Muñoz-Marí, J., Camps-Valls, G.
    Digital Signal Processing: A Review Journal, 26(1): 1-20, 2014.


Repository Structure

Main Directories

  • data/: Contains sample input/output signals.
  • rvm_code/: Implements RVM solvers and KARMA methods.
  • svm_code/: Contains SVM implementations and compiled files for different platforms.

Key Scripts

  • Demo.m: Demonstrates training of KARMA methods for nonlinear signal estimation.
  • demo_rvm.m: Sparse Bayesian learning (SBL) example for RVM-based regression.
  • BuildData.m: Generates input/output matrices based on signal delay and tap order.
  • BuildKernels.m: Builds composite kernel matrices using methods like 'svr', '2k', 'svr+4k'.
  • TrainKernel.m: Trains kernel matrices using solvers: 'krr', 'svr', and 'rvm'.

Setup

  1. Install MATLAB.
  2. Clone the repository:
# Clone the repository
https://github.com/IPL-UV/karma_rvm.git
cd karma_rvm
  1. Add paths to MATLAB:
% Add paths to required directories
addpath('./data/');
addpath('./rvm_code/');
addpath('./svm_code/');

Usage

Example 1: Training KARMA Methods

Run the main demonstration script for KARMA methods:

clear; clc; close all;

% Select method and problem
method  = 'stack+4k';   % Kernel method
problem = 'mg17';       % Signal problem

% Parameters
D  = 0;    % Signal delay
p  = 2;    % Tap order
gam = 1e-4; % Regularization
C  = 1e2;   % Penalization
e  = 1e-5;  % Epsilon insensitivity

% Kernel setup
ker = 'rbf';
kparams.x = 2; kparams.y = 2; kparams.z = 2;

% Load sample data
load mg17.dat
N = 400; M = 1000;
X = mg17(1:N-1); Y = mg17(2:N);

% Build data matrices
[Hx, Hy, ~, ~] = BuildData(X, Y, [], [], D, p);

% Build kernel matrices
[K, ~] = BuildKernels(Hx, Hy, [], [], ker, kparams, method);

% Train with different solvers
[Yhat_krr, results_krr] = TrainKernel(K, [], Y, [], D, p, gam, e, C, 'krr');
[Yhat_rvm, results_rvm] = TrainKernel(K, [], Y, [], D, p, gam, e, C, 'rvm');

% Display results
disp(results_krr);
disp(results_rvm);

Example 2: Sparse Bayesian Regression with RVM

Run the RVM demonstration for noisy sinc data:

setEnvironment('InfoLevel', 3);

% Generate noisy sinc data
N = 100;
X = 10 * linspace(-1, 1, N)';
y = sin(abs(X)) ./ abs(X) + 0.1 * randn(N, 1);

% Train RVM
initAlpha = 1e-4; initBeta = 1;
[weights, used] = sbl_rvm(X, y, initAlpha, initBeta, '+gauss', 3);

% Predict and plot
PHI = sbl_kernelFunction(X, X(used), '+gauss', 3);
y_pred = PHI * weights;

figure;
plot(X, y, 'r--', X, y_pred, 'w-', 'LineWidth', 2);
title('RVM Regression on Noisy Sinc Data');

SVM Files

The folder svm_code contains precompiled files for SVM training and prediction:

  • Windows: svmtrain.dll, svmpredict.dll
  • Linux 64-bit: svmtrain.mexa64, svmpredict.mexa64
  • Linux (older systems): svmtrain.mexglx, svmpredict.mexglx

To use these, call the svmtrain and svmpredict functions directly in MATLAB.


Results and Visualization

Outputs:

  • Predicted vs Actual Scatter Plots: Compare predictions for KRR, SVR, and RVM visually.
  • Boxplots of Residuals: Analyze the residual errors to compare solver performances.

Authors

  • Jordi Muñoz-Marí
  • Gustavo Camps-Valls
  • Manel Martínez-Ramón
  • José L. Rojo-Álvarez

Copyright © 2006


License

This project is distributed under the MIT License.