-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathhowstereo.py
executable file
·393 lines (317 loc) · 13.3 KB
/
howstereo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
#!/usr/bin/python3
# -*- coding:utf-8 -*-
import sys
import argparse
import textwrap
from math import radians, degrees, sin, cos, acos, tan, atan2, pi
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from itertools import combinations
# howstereo.py - Computes the B to H ratio of pairs of Pleiades or SPOT6|7
# images
# Copyright (C) 2022 Arthur Delorme
#
# This program is free software: you can redistribute it and/or modify it under
# the terms of the GNU General Public License as published by the Free Software
# Foundation, either version 3 of the License, or (at your option) any later
# version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along with
# this program. If not, see <http://www.gnu.org/licenses/>.
# (Contact: [email protected])
class Image(object):
"""
Regroup the parameters attached to an image
A is a point on the look direction with OA = 1
Input:
scan [float] incidence angle in the Scan axis direction
ortho [float] incidence angle in the OrthoScan axis direction
az [float] azimuth of the Scan axis
s_comp [float] coordinate of A on the Scan axis
o_comp [float] coordinate of A on the OrthoScan axis
z_comp [float] coordinate of A on the z axis
geo_n_comp [float] coordinate of A on the North axis
geo_w_comp [float] coordinate of A on the West axis
geo_z_comp [float] coordinate of A on the z axis
"""
def __init__(self, name, scan, ortho, az,
s_comp=None, o_comp=None, z_comp=None,
geo_n_comp=None, geo_w_comp=None, geo_z_comp=None):
self._name = name
self._scan = scan
self._ortho = ortho
self._az = az
self._s_comp = s_comp
self._o_comp = o_comp
self._z_comp = z_comp
self._geo_n_comp = geo_n_comp
self._geo_w_comp = geo_w_comp
self._geo_z_comp = geo_z_comp
@property
def name(self):
return self._name
@property
def scan(self):
return self._scan
@property
def ortho(self):
return self._ortho
@property
def az(self):
return self._az
@property
def s_comp(self):
return self._s_comp
@s_comp.setter
def s_comp(self, value):
self._s_comp = value
@property
def o_comp(self):
return self._o_comp
@o_comp.setter
def o_comp(self, value):
self._o_comp = value
@property
def z_comp(self):
return self._z_comp
@z_comp.setter
def z_comp(self, value):
self._z_comp = value
@property
def geo_n_comp(self):
if not self._geo_n_comp:
self.compute_geo_coord()
return self._geo_n_comp
@geo_n_comp.setter
def geo_n_comp(self, value):
self._geo_n_comp = value
@property
def geo_w_comp(self):
if not self._geo_n_comp:
self.compute_geo_coord()
return self._geo_w_comp
@geo_w_comp.setter
def geo_w_comp(self, value):
self._geo_w_comp = value
@property
def geo_z_comp(self):
if not self._geo_n_comp:
self.compute_geo_coord()
return self._geo_z_comp
@geo_z_comp.setter
def geo_z_comp(self, value):
self._geo_z_comp = value
def compute_geo_coord(self):
"""
Computes the geographic coordinates of point A, if the required
variables (i.e. self._s_comp, self._o_comp, self._z_comp) have been set
"""
if self._s_comp is not None and self._o_comp is not None and \
self._z_comp is not None:
# We express A coordinates in the geographic reference through a
# rotation of self._az around the z axis
rot_z = [[cos(self._az), -sin(self._az), 0],
[sin(self._az), cos(self._az), 0],
[ 0, 0, 1]]
sym_z = [[1, 0, 0], # We also need to apply a symmetry with
[0, -1, 0], # respect to the (N,Z) plane, because the
[0, 0, 1]] # (O, N, E, Z) coordinate system is not direct
sym_rot_z = np.dot(rot_z, sym_z)
self._geo_n_comp, self._geo_w_comp, self._geo_z_comp = np.dot(
sym_rot_z,
[self._s_comp, self._o_comp, self._z_comp]
)
def compute_b_to_h(im1, im2):
"""
Computes the B/H ratio of a couple of images
See the Figures 45 and 47 in the Pléiades Imagery User Guide.
See also the Figures 35, 36 and 37 in the SPOT 6 & SPOT 7 Imagery User
Guide.
The coordinate system is (O, Scan axis, OrthoScan axis, perpendicular to
the ground) -> (O, Scan, Ortho, z).
P is a point on the look direction of the first acquisition with OP = 1.
s_comp coordinate of P (or Q or P') on the Scan axis
o_comp coordinate of P (or Q or P') on the OrthoScan axis
z_comp coordinate of P (or Q or P') on the z axis
Input:
im1 Image instance for the first image
im2 Image instance for the second image
Returns:
stereo_angle (in degrees)
b_to_h
"""
# 1) We express P coordinates in the reference of the first acquisition
im1.s_comp = cos(im1.ortho) * sin(im1.scan)
im1.o_comp = cos(im1.scan) * sin(im1.ortho)
im1.z_comp = cos(im1.ortho) * cos(im1.scan)
# 2) We express P coordinates in the reference of the second acquisition
# with a rotation around the z axis
teta = im2.az - im1.az # Difference of azimuth between the two acquisitions
p = [im1.s_comp, im1.o_comp, im1.z_comp]
rot_z = [[cos(teta), -sin(teta), 0], # Rotation around the z axis; a
[sin(teta), cos(teta), 0], # counterclockwise angle is
[ 0, 0, 1]] # positive
p_prime = np.dot(rot_z, p)
# Q is a point on the look direction of the second acquisition
# 3) We compute the scalar product of vectors OP' and OQ to get the stereo
# angle and the B/H
im2.s_comp = cos(im2.ortho) * sin(im2.scan)
im2.o_comp = cos(im2.scan) * sin(im2.ortho)
im2.z_comp = cos(im2.ortho) * cos(im2.scan)
q = [im2.s_comp, im2.o_comp, im2.z_comp]
# Scalar product:
# (1) vect(OP').vect(OQ) = dist(OP') * dist(OQ) * cos(alpha) = cos(alpha)
# (2) vect(OP').vect(OQ) = P'_s * Q_s + P'_o * Q_o + P'_z * Q_z
# (1)&(2) -> alpha = acos(P'_s * Q_s + P'_o * Q_o + P'_z * Q_z)
stereo_angle = acos(p_prime[0] * q[0]+ p_prime[1] * q[1] + p_prime[2] * \
q[2])
half_angle = stereo_angle / 2.
b_to_h = tan(half_angle) * 2
return [degrees(stereo_angle), b_to_h]
def repeatForEach(elements, times):
"""
"a more user-friendly way to specify color for each arrow in 3D quiver?"
https://github.com/matplotlib/matplotlib/issues/8484
"""
return [e for e in elements for _ in range(times)]
if __name__ == "__main__":
print('howstereo.py Copyright (C) 2020 Arthur Delorme\n')
parser = argparse.ArgumentParser(
formatter_class=argparse.RawDescriptionHelpFormatter,
description=("Computes the B to H ratio of pairs of Pleiades or "
"SPOT6|7 images"),
epilog=textwrap.dedent('''
Note on azimuth angle:
TL;DR: if the angle is from a SPOT6|7 DIMAP file, select "target" for --az_mode. Otherwise,
select "scan" (default).
The azimuth of the scan axis (i.e. the angle between geographic north and the image line
axis on the ground) is used in the B/H calculation. In the Geostore, this angle is called
the Orientation angle. In the DIMAP file, for Pléiades, it corresponds to the
AZIMUTH_ANGLE, but, for SPOT6|7, the AZIMUTH_ANGLE refers to the target azimuth. If you
provide the target azimuth as input, you must select "target" for --az_mode, and the
program will perform the conversion. Otherwise, select "scan".
This program comes with ABSOLUTELY NO WARRANTY.
This is free software, and you are welcome to redistribute
it under certain conditions.
See the GNU General Public License for more details.''')
)
parser.add_argument('--inc1', type=float, nargs=2,
metavar=('ALONG', 'ACROSS'),
help="incidence angles for image 1 (in degrees)")
parser.add_argument('--az1', type=float, metavar='AZIMUTH',
help="azimuth angle for image 1 (in degrees)")
parser.add_argument('--inc2', type=float, nargs=2,
metavar=('ALONG', 'ACROSS'),
help="incidence angles for image 2 (in degrees)")
parser.add_argument('--az2', type=float, metavar='AZIMUTH',
help="azimuth angle for image 2 (in degrees)")
parser.add_argument('--az_mode', type=str, choices=['scan', 'target'],
default='scan', help=("type of azimuth angle (see the note below; "
"default: %(default)s)")
)
parser.add_argument('--input_file', metavar='FILE',
help=("input from a file instead (in csv format: "
"inc_along,inc_across,az)")
)
parser.add_argument('--show_plot', action='store_true',
help="show a 3D, interactive plot")
if len(sys.argv) == 1: # https://stackoverflow.com/a/4042861/13433994
parser.print_help(sys.stderr)
sys.exit()
args = parser.parse_args()
# The convention used for the angles is: positive counterclockwise. Thus,
# some of the angles need to be converted from CNES convention to this one.
# Read the input
images = [] # A list of all the images
if args.input_file:
with open(args.input_file) as f:
for i, l in enumerate(f):
scan, ortho, az = l.split(',')
scan = radians(float(scan))
ortho = radians(float(ortho))
az = radians(float(az))
if args.az_mode == 'target':
az = (az + atan2(tan(ortho), tan(scan))) % (2 * pi)
# Minus sign: conversion from the CNES convention to our
ortho = -ortho
az = -az
images.append(Image('im{}'.format(i+1), scan, ortho, az))
else:
if not (args.inc1 and args.az1 and args.inc2 and args.az2):
sys.exit("Error: missing arguments")
scan1, ortho1 = args.inc1
scan1 = radians(scan1)
ortho1 = radians(ortho1)
az1 = radians(args.az1)
scan2, ortho2 = args.inc2
scan2 = radians(scan2)
ortho2 = radians(ortho2)
az2 = radians(args.az2)
if args.az_mode == 'target':
az1 = (az1 + atan2(tan(ortho1), tan(scan1))) % (2 * pi)
az2 = (az2 + atan2(tan(ortho2), tan(scan2))) % (2 * pi)
# Minus sign: conversion from the CNES convention to our
ortho1 = -ortho1
az1 = -az1
ortho2 = -ortho2
az2 = -az2
images.extend([Image('im1', scan1, ortho1, az1),
Image('im2', scan2, ortho2, az2)])
# Compute the B/H
pairs = [] # A list of all possible pairs of images
for p in list(combinations(images, 2)):
im1, im2 = p
stereo_angle, b_to_h = compute_b_to_h(im1, im2)
pairs.append({
'name': '{}-{}'.format(im1.name, im2.name),
'stereo_angle': stereo_angle,
'b_to_h': b_to_h
})
pairs = sorted(pairs, key=lambda k: k['b_to_h'])
print('pair\tb/h\tangle')
for p in pairs:
print('{}\t{:.2f}\t{:.1f}°'.format(
p['name'], p['b_to_h'], p['stereo_angle']
))
# 3D plot
if not args.show_plot:
sys.exit()
rays = np.zeros(shape=(len(images),6)) # Initialization; the rays to draw,
# one per image
for i, im in enumerate(images):
rays[i] = [ 2*im.geo_n_comp, 2*im.geo_w_comp, 2*im.geo_z_comp,
-4*im.geo_n_comp, -4*im.geo_w_comp, -4*im.geo_z_comp]
north = np.array([[-1, 0, 0, 2, 0, 0]])
# Colors (https://github.com/matplotlib/matplotlib/issues/8484)
cmap = plt.get_cmap('rainbow')
c = list(np.linspace(0, 1, num=len(images)))
c = c + repeatForEach(c, 2)
x_r, y_r, z_r, u_r, v_r, w_r = zip(*rays)
x_n, y_n, z_n, u_n, v_n, w_n = zip(*north)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.quiver(x_r, y_r, z_r, u_r, v_r, w_r, arrow_length_ratio=0.1,
color=cmap(c), linewidths=3)
ax.quiver(x_n, y_n, z_n, u_n, v_n, w_n, colors=[0,0,0], linewidths=2)
xx, yy = np.meshgrid(range(-2,3), range(-2,3))
zz = np.array(5*[5*[0]])
ax.plot_surface(xx, yy, zz, alpha=0.1)
ax.text(1, 0, 0, 'N', fontsize=30)
for i, im in enumerate(images):
ax.text(2*im.geo_n_comp, 2*im.geo_w_comp, 2*im.geo_z_comp,
'i{}'.format(i+1), fontsize=20)
lim = [-2.5, 2.5]
ax.set_xlim(lim)
ax.set_ylim(lim)
ax.set_zlim(lim)
ax.set_xlabel('North')
ax.set_ylabel('West')
ax.set_zlabel('Vertical')
ax.view_init(elev=30., azim=-160)
plt.tight_layout()
plt.show()